~ K-means clustering

Kmeans clustering is one of the most popular clustering algorithms and usually the first thing
practitioners apply when solving clustering tasks to get an idea of the structure of the dataset.
Given a set of observations (x1, X2, ..., xn), where each observation is a d-dimensional real vector,
k-means clustering aims to partition the n observations into k (< n) sets.

Why do we cluster?

e Exploratory data analysis technique used to get an intuition about the structure of the data.
e Summarize data - Represent a large continuous vector with a cluster number.

Algorithm:

e Assume K clusters

e Assume points that are close to other points belong to the same group. Far points are
outside of the group

e Randomly initialize cluster centers

e Calculate distance of points to centers

e Assign each point to closest cluster center

e Update, cluster centers: center of gravity of points in each class.

e Repeat!

Assignment step: Assign each observation to the cluster with the nearest mean: that with the
least squared Euclidean distance.

Sz(t) = {‘”p ‘ Ha’p - mz(t) ’2 < Ha’p - mg-t)Hz Vj,1<j < k} ;

Update step: Recalculate means (centroids) for observations assigned to each cluster.

Output:

e centroids for each cluster
e cluster id for each point

Design Choices:
e [nitialization

o Randomly select K points as initial cluster centers
o Number of hyperparrameter K is important

Challenges:

L]

0.8

o6

I8

0.3

0.2

ol

e Optimization

o Converges to a local minimum
o May want to perform multiple restarts (re-initialize and try again)

Iteration #0

ol 0 3 94 05 06 OT 0B 0% 1

from numpy.linalg import norm

#Objecct Oriented Implementation of K-means

class Kmeans:

#Set some parameters to initialize
def init (self, n clusters, max iter=100, tolerance = le-3,debug=False,random
#nSpecify umber of centroids/clusters K
self.n clusters = n clusters
#Maximum iterations to run the algorithm
self.max iter = max iter
#Initialize random number generator
self.random state = random state
Tolerance value to indicate that no improvement is made
self.tol = tolerance
enable/disable debug messages
self.debug = debug

#Initialize the centroids

def initialize centroids(self, X):
#Initialize centroids by first shuffling the dataset and then randomly
#selecting K data points for the centroids without replacement
#np.random.RandomState (self.random state)
random idx = np.random.permutation (X.shape[0])
#Randomly initialize K cluster centroids
centroids = np.array(X[random idx[:self.n clusters]])

return centroids

#recompute a centroid based on the points x i that belong to the same cluster.
def compute centroids(self, X, labels):
centroids = np.zeros((self.n clusters, X.shape[l]))
for k in range(self.n clusters):
average of points in the same cluster
centroids[k, :] = np.mean(X[labels == k, :], axis=0)

return centroids

#find distance of each point x i from all the centroids
def compute distance(self, X, centroids):
distance = np.zeros ((X.shapel[0], self.n clusters))
for k in range(self.n clusters):
row norm = norm(X - centroids[k, :], axis=1)
distance[:, k] = np.square(row_norm)
return distance

#select the centroid with the smaller distance for each point
def find closest cluster (self, distance):

return np.argmin(distance, axis=1)

def compute sse(self, X, labels, centroids):
distance = np.zeros (X.shape[0])
for k in range(self.n clusters):
Average (mean) of points assigned to cluster k
distance[labels == k] = norm(X[labels == k] - centroids[k], axis=1)
return np.sum(np.square (distance))

Main steps of K-Means
def fit(self, X):
self.centroids = self.initialize centroids (X)
if (self.debug) :
print ('Initial centroids:'")
print (self.centroids)

track lowest error
min error = np.Inf

for i in range(self.max iter):
save previous centroids to compare how they change
old centroids = self.centroids

#Compute the sum of the squared distance between data points and
#all centroids.

#find distance of points x i

distance = self.compute distance (X, old centroids)

Assign each data point to the closest cluster (centroid).

find index of cluster centroid closest to x i

self.labels = self.find closest cluster (distance)

Compute the centroids for the clusters by taking the average of the
all data points that belong to each cluster.

average (mean) of points assigned to cluster k

self.centroids = self.compute centroids (X, self.labels)

#Compute cost function (distortion)
#distortion, is defined as the sum of the squared distances between each obse
self.error = (1/X.shape[0])*self.compute sse (X, self.labels, self.centroids)

keep only the best centroids
if (self.error < min error):
min error = self.error

best centroids = self.centroids

if (self.debug) :
print(i,": ",self.error)

Keep iterating until there is no change to the centroids. i.e assignment
of data points to clusters isn’t changing.
If no significant change to any of the clusters then terminate
if self.compute distance(self.centroids, old centroids).all()< self.tol:
Pick clustering solution that gave the lowest distortion
self.centroids = best centroids
break

def predict(self, X):
find disances of x i from centroids
distance = self.compute distance (X, self.centroids)
#return the index of the closest centroid
return self.find closest cluster (distance)

import matplotlib.pyplot as plt
import numpy as np

from matplotlib import style
import matplotlib.cm as cm

style.use('ggplot"')

#1.

#X = np.array([[1, 2],

[1.5, 1.87,
[5, 8 1,

(8, 81,

[1, 0.67,

[9,1111)
#y=None

from sklearn.datasets import make blobs,make moons, load iris
generate 2d classification dataset

2.
#X, y = make blobs(n samples=100, centers=2, n features=2)

#3.

X, y = make moons (n_samples=100, noise=0.1)

#4.

#This data sets consists of 3 different types of irises’ (Setosa, Versicolour, and
iris = load iris()

X = iris.datal:, :2] # we only take the first two features.

v = iris.target

print ('Number of samples: ',X.shape[0])
print ('Number features: ',X.shapell])
plt.scatter(X[:, 0], X[:, 1],c=y)

plt.show ()

Number of samples: 100
Number features: 2

L] s ™
"o st e
100 K &, .,
075 - 5 ‘
. -'
[]
050 - o s »
e
0.25 T %
0.00 -
. '
—-0.25 -
—0.50 -
-0.75 -
-1.0 —0.5 00 05 10 15 20

Run local implementation of kmeans

model = Kmeans (n_clusters=2, max iter=100,debug=False)
model.fit (X)

Plot the clustered data

fig, ax = plt.subplots(figsize=(6, 6))

labnames=np.array([i+l for i in range (model.n clusters)]).T

plt.scatter (X[:, 0], X[:, 1],c=model.labels)

plt.scatter (model.centroids[:, 0], model.centroids[:, 1], marker='*', s=300, c='r',
plt.title('Visualization of clustered data', fontweight='bold"')

ax.set aspect('equal')

Visualization of clustered data

bl)
100 - ofoe
" ..
.
075 - - MR =
.]
_ x o -
0.50 ol
[L]
025- ® b
F R e .
0.00 o s *
.
—0.25
—0.50
-0.75
-1.0 -0.5 0.0 0.5 10 15 20

~ How to choose the number of clusters?

Elbow method: Stop adding clusters when improvement is small.

Sometimes it’s still hard to figure out a good number of clusters to use because the curve is
monotonically decreasing and may not show any elbow or has an obvious point where the curve

starts flattening out.

#Finding the best number of clusters
X, y = make blobs(n samples=100, centers=3, n features=2)
X, y = make moons (n samples=100, noise=0.1)

err = []
for k in range(1l,21):
me=np.Inf
for j in range(10):
model = Kmeans (n clusters=k)
model.fit (X)
if (model.error<me) :
me = model.error
err.append (me)
plt.plot (err)
plt.xticks (range (20), [r for r in range(1,21)1)
plt.xlabel ('K - Number of clusters')
plt.ylabel ('Error')
print (np.argmin(err))

18

10 -

& -

Error

0o -

1 2 3 45 6 7 8 91011121314 151617 1819 20
K - Mumber of clusters

~ K-Means and Spectral Clustering

K-Means suffers as the geometric shapes of clusters deviates from spherical shapes. The idea
is we transform to higher dimensional representation that make the data linearly separable (the
same idea that we use in SVMs). Different kinds of algorithms work very well in such scenarios
such as SpectralClustering.

Spectral clustering is a technique for clustering based on transformation by dimensionality
reduction. In practice Spectral Clustering is very useful when the structure of the individual
clusters is highly non-convex or more generally when a measure of the center and spread of the
cluster is not a suitable description of the complete cluster. For instance when clusters are
nested circles on the 2D plane.

Find a low-dimensional

'..: - u;‘nbuddin;{ by N
* o® .'I * eigen-decomposition
tele, W)
L] .. @

. %
e o>
separates data while projecting in the low dimensional space

Before spectral clustering After spectral clustering

b

allows clustering of non-convex data effectively @

from sklearn.cluster import SpectralClustering
model = SpectralClustering(n clusters=2, affinity='nearest neighbors’,
assign labels='kmeans')
labels = model.fit predict (X)
plt.scatter (X[:, 0], X[:, 1], c=labels,
s=50, cmap='viridis');

.
100 - e o .ni
; " .8
075 - N » .
-
. Ly
050 - o b
0.25 - -q'
F X
0.00 -
-
-0.25 -
-0.50 -

-0.75 -
-1.0 -0.5 0.0 05 10 15 20

~ K-Means for Image compression

In computer graphics, color quantization is the task of reducing the color palette of an image to
a fixed number of colors k. A color is represented as a three dimensional vector [Red, Green,
Blue] each ranging from 0...255. So we have a total of 16581375 (2553) colors. Our goal is to
reduce the number of colors to k and represent (compress) the photo using those k colors only.
we'll use kmeans algorithm on the image and treat every pixel as a data point. That means
reshape the image from height x width x channels to (height * width) x channel, i,e we would
have 396 x 396 = 156,816 data points in 3-dimensional space which are the intensity of RGB. If
we add also the x,y location we have (height * width) x (channel+2), i,e we would have 396 x 396
= 156,816 data points in 5-dimensional space

YV

Channels

~
© 0 [R,G,B,x,v]
0
]
2

Rows 3

o n b

We do this with K-means by finding similar pixels and using the color corresponding to their

centroid to represent them.

from skimage import data

import numpy as np

import matplotlib.pyplot as plt
from PIL import Image

from sklearn import preprocessing
import cv2

data.astronaut

image = data.astronaut ()

image = cv2.resize (image, (100,100))
plt.imshow (image)

print (image.shape)
imageH, imageW = image.shape[0:2]

Initialise data vector with attribute r,g,b,x,y for each pixel
dataVector = np.ndarray (shape=(imageW * imageH, 5), dtype=float)

Initialise vector that holds which cluster a pixel is currently in
pixelClusterAppartenance = np.ndarray (shape=(imageW * imageH), dtype=int)

Populate data vector with data from input image
dataVector has 5 fields: red, green, blue, x coord, y coord
for y in range (0, imageH) :

for x in range (0, imageW) :

Xy = (X, VY)

rgb = imagely,x, :]

dataVector[x + y * imageW, 0] = rgb[O0]
dataVector[x + y * imageW, 1] = rgb[l]
dataVector[x + y * imageW, 2] = rgb[2]
dataVector[x + y * imageW, 3] = x
dataVector[x + y * imageW, 4] =y

#Features of different types may have different scales.

#For example, pixel coordinates on a 100x100 image vs. RGB color values in the ranc
#Problem: Features with larger scales dominate clustering.

#Solution: Scale the features.

Standarize the values of our features
RGB values and dimensions have different scales
dataVector scaled = preprocessing.normalize (dataVector)

print (dataVector scaled.shape)

model = Kmeans (n clusters=10,debug=False)
model.fit (dataVector scaled)

(100, 100, 3)
(10000, 5)

o 20 40 () 80

#Find the closest color for each datapoint
import matplotlib.cm as cm

colors cm.rainbow (np.linspace (0, 1, len(model.centroids)))
for ndv,dvV in zip(dataVector scaled,dataVector):

item = int (model.predict (ndv[None, :]))

dv[0] = int (round(model.centroids[item] [0] * 255))

dvi[l] int (round (model.centroids[item] [1] * 255))

av (2] int (round (model.centroids[item] [2] * 255))

Replace all the pixels in the original image with the centroid color
for y in range (imageH) :

for x in range (imageW) :
imagely, x,:]=[int (dataVector[y * imageW + x][0]),
int (dataVector[y * imageW + x][1]),
int (dataVector[y * imageW + x][2])]

#display the image
plt.imshow (image)

<matplotlib.image.AxesImage at Ox7f6cadad45do>

)

ED . .
o 20

40 a0 80

