
K-means clustering

Kmeans clustering is one of the most popular clustering algorithms and usually the �rst thing
practitioners apply when solving clustering tasks to get an idea of the structure of the dataset.
Given a set of observations (x1, x2, ..., xn), where each observation is a d-dimensional real vector,
k-means clustering aims to partition the n observations into k (≤ n) sets.

Why do we cluster?

Exploratory data analysis technique used to get an intuition about the structure of the data.
Summarize data - Represent a large continuous vector with a cluster number.

Algorithm:

Assume K clusters
Assume points that are close to other points belong to the same group. Far points are
outside of the group
Randomly initialize cluster centers
Calculate distance of points to centers
Assign each point to closest cluster center
Update, cluster centers: center of gravity of points in each class.
Repeat!

Assignment step: Assign each observation to the cluster with the nearest mean: that with the
least squared Euclidean distance.

Update step: Recalculate means (centroids) for observations assigned to each cluster.

Output:

centroids for each cluster
cluster id for each point

Design Choices:

Initialization

Randomly select 𝐾 points as initial cluster centers
Number of hyperparrameter 𝐾 is important

Challenges:



Optimization

Converges to a local minimum
May want to perform multiple restarts (re-initialize and try again)

from numpy.linalg import norm 

#Objecct Oriented Implementation of K-means 
class Kmeans: 

  #Set some parameters to initialize  
  def __init__(self, n_clusters, max_iter=100, tolerance = 1e-3,debug=False,random_
    #nSpecify umber of centroids/clusters K 
    self.n_clusters = n_clusters 
    #Maximum iterations to run the algorithm 
    self.max_iter = max_iter 
    #Initialize random number generator 
    self.random_state = random_state 
    # Tolerance value to indicate that no improvement is made 
    self.tol = tolerance 
    # enable/disable debug messages 
    self.debug = debug 
   
  #Initialize the centroids 
  def initialize_centroids(self, X): 
    #Initialize centroids by first shuffling the dataset and then randomly  
    #selecting K data points for the centroids without replacement 
    #np.random.RandomState(self.random_state) 
    random_idx = np.random.permutation(X.shape[0]) 
    #Randomly initialize K cluster centroids 
    centroids = np.array(X[random_idx[:self.n_clusters]]) 
    return centroids

  #recompute a centroid based on the points x_i that belong to the same cluster. 
  def compute_centroids(self, X, labels): 
    centroids = np.zeros((self.n_clusters, X.shape[1])) 
    for k in range(self.n_clusters): 
      # average of points in the same cluster 
      centroids[k, :] = np.mean(X[labels == k, :], axis=0) 
    return centroids



  #find distance of each point x_i from all the centroids 
  def compute_distance(self, X, centroids): 
    distance = np.zeros((X.shape[0], self.n_clusters)) 
    for k in range(self.n_clusters): 
      row_norm = norm(X - centroids[k, :], axis=1) 
      distance[:, k] = np.square(row_norm) 
    return distance 

  #select the centroid with the smaller distance for each point 
  def find_closest_cluster(self, distance): 
    return np.argmin(distance, axis=1) 

  def compute_sse(self, X, labels, centroids): 
    distance = np.zeros(X.shape[0]) 
    for k in range(self.n_clusters): 
      # Average (mean) of points assigned to cluster k 
      distance[labels == k] = norm(X[labels == k] - centroids[k], axis=1) 
    return np.sum(np.square(distance))     

  # Main steps of K-Means 
  def fit(self, X): 
    self.centroids = self.initialize_centroids(X) 
    if(self.debug): 
      print('Initial centroids:') 
      print(self.centroids) 

    # track lowest error 
    min_error = np.Inf   

    for i in range(self.max_iter): 
      # save previous centroids to compare how they change 
      old_centroids = self.centroids 

      #Compute the sum of the squared distance between data points and  
      #all centroids. 
      #find_distance of points x_i  
      distance = self.compute_distance(X, old_centroids) 
      # Assign each data point to the closest cluster (centroid). 
      # find index of cluster centroid closest to x_i 
      self.labels = self.find_closest_cluster(distance) 
      # Compute the centroids for the clusters by taking the average of the  
      # all data points that belong to each cluster. 
      # average (mean) of points assigned to cluster k 
      self.centroids = self.compute_centroids(X, self.labels) 

      #Compute cost function (distortion) 
      #distortion, is defined as the sum of the squared distances between each obse
      self.error = (1/X.shape[0])*self.compute_sse(X, self.labels, self.centroids) 

      # keep only the best centroids 
      if(self.error < min_error): 
        min_error = self.error 
        best_centroids = self.centroids 



      if(self.debug): 
        print(i,": ",self.error) 

      # Keep iterating until there is no change to the centroids. i.e assignment  
      # of data points to clusters isn’t changing. 
      # If no significant change to any of the clusters then terminate   
      if self.compute_distance(self.centroids, old_centroids).all()< self.tol: 
        # Pick clustering solution that gave the lowest distortion 
        self.centroids = best_centroids 
        break 

  def predict(self, X): 
    # find disances of x_i from centroids 
    distance = self.compute_distance(X, self.centroids) 
    #return the index of the closest centroid 
    return self.find_closest_cluster(distance) 
   

import matplotlib.pyplot as plt 
import numpy as np 
from matplotlib import style 
import matplotlib.cm as cm 

style.use('ggplot') 

#1. 
#X = np.array([[1, 2], 
#              [1.5, 1.8], 
#             [5, 8 ], 
#             [8, 8], 
#              [1, 0.6], 
#              [9,11]]) 
#y=None 

from sklearn.datasets import make_blobs,make_moons, load_iris 
# generate 2d classification dataset 

# 2. 
#X, y = make_blobs(n_samples=100, centers=2, n_features=2) 

#3. 
X, y = make_moons(n_samples=100, noise=0.1) 

#4. 
#This data sets consists of 3 different types of irises’ (Setosa, Versicolour, and 
# iris = load_iris() 
# X = iris.data[:, :2]  # we only take the first two features. 
# y = iris.target 

print('Number of samples: ',X.shape[0]) 
print('Number features: ',X.shape[1]) 
plt.scatter(X[:, 0], X[:, 1],c=y) 
plt.show()



Number of samples:  100 
Number features:  2 

# Run local implementation of kmeans 

model = Kmeans(n_clusters=2, max_iter=100,debug=False) 
model.fit(X) 

# Plot the clustered data 
fig, ax = plt.subplots(figsize=(6, 6)) 
labnames=np.array([i+1 for i in range(model.n_clusters)]).T 
plt.scatter(X[:, 0], X[:, 1],c=model.labels) 
plt.scatter(model.centroids[:, 0], model.centroids[:, 1], marker='*', s=300, c='r',
plt.title('Visualization of clustered data', fontweight='bold') 
ax.set_aspect('equal') 

Elbow method: Stop adding clusters when improvement is small.

Sometimes it’s still hard to �gure out a good number of clusters to use because the curve is
monotonically decreasing and may not show any elbow or has an obvious point where the curve
starts �attening out.

How to choose the number of clusters?



18 

#Finding the best number of clusters 
X, y = make_blobs(n_samples=100, centers=3, n_features=2) 
X, y = make_moons(n_samples=100, noise=0.1) 

err = [] 
for k in range(1,21): 
  me=np.Inf 
  for j in range(10): 
    model = Kmeans(n_clusters=k) 
    model.fit(X) 
    if(model.error<me): 
      me = model.error 
  err.append(me) 
plt.plot(err) 
plt.xticks(range(20),[r for r in range(1,21)]) 
plt.xlabel('K - Number of clusters') 
plt.ylabel('Error') 
print(np.argmin(err)) 

K-Means and Spectral Clustering

K-Means suffers as the geometric shapes of clusters deviates from spherical shapes. The idea
is we transform to higher dimensional representation that make the data linearly separable (the
same idea that we use in SVMs). Different kinds of algorithms work very well in such scenarios
such as SpectralClustering.

Spectral clustering is a technique for clustering based on transformation by dimensionality
reduction. In practice Spectral Clustering is very useful when the structure of the individual
clusters is highly non-convex or more generally when a measure of the center and spread of the
cluster is not a suitable description of the complete cluster. For instance when clusters are
nested circles on the 2D plane.



from sklearn.cluster import SpectralClustering 
model = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', 
                           assign_labels='kmeans') 
labels = model.fit_predict(X) 
plt.scatter(X[:, 0], X[:, 1], c=labels, 
            s=50, cmap='viridis'); 

K-Means for Image compression



In computer graphics, color quantization is the task of reducing the color palette of an image to
a �xed number of colors k. A color is represented as a three dimensional vector [Red, Green,
Blue] each ranging from 0...255. So we have a total of 16581375 (255^3) colors. Our goal is to
reduce the number of colors to k and represent (compress) the photo using those k colors only.
we’ll use kmeans algorithm on the image and treat every pixel as a data point. That means
reshape the image from height x width x channels to (height * width) x channel, i,e we would
have 396 x 396 = 156,816 data points in 3-dimensional space which are the intensity of RGB. If
we add also the x,y location we have (height * width) x (channel+2), i,e we would have 396 x 396
= 156,816 data points in 5-dimensional space

We do this with K-means by �nding similar pixels and using the color corresponding to their
centroid to represent them.

from skimage import data 
import numpy as np 
import matplotlib.pyplot as plt 
from PIL import Image 
from sklearn import preprocessing 
import cv2
data.astronaut 
image = data.astronaut() 
image = cv2.resize(image,(100,100)) 
plt.imshow(image) 

print(image.shape) 
imageH,imageW = image.shape[0:2] 

#   Initialise data vector with attribute r,g,b,x,y for each pixel 
dataVector = np.ndarray(shape=(imageW * imageH, 5), dtype=float) 
#   Initialise vector that holds which cluster a pixel is currently in 
pixelClusterAppartenance = np.ndarray(shape=(imageW * imageH), dtype=int) 



(100, 100, 3) 
(10000, 5) 

#   Populate data vector with data from input image 
#   dataVector has 5 fields: red, green, blue, x coord, y coord 
for y in range(0, imageH): 
      for x in range(0, imageW): 
        xy = (x, y) 
        rgb = image[y,x,:] 
        dataVector[x + y * imageW, 0] = rgb[0] 
        dataVector[x + y * imageW, 1] = rgb[1] 
        dataVector[x + y * imageW, 2] = rgb[2] 
        dataVector[x + y * imageW, 3] = x 
        dataVector[x + y * imageW, 4] = y 

#Features of different types may have different scales. 
#For example, pixel coordinates on a 100×100 image vs. RGB color values in the rang
#Problem: Features with larger scales dominate clustering. 
#Solution: Scale the features. 

#   Standarize the values of our features 
# RGB values and dimensions have different scales 
dataVector_scaled = preprocessing.normalize(dataVector) 

print(dataVector_scaled.shape) 

model = Kmeans(n_clusters=10,debug=False) 
model.fit(dataVector_scaled) 

#Find the closest color for each datapoint 
import matplotlib.cm as cm 
colors = cm.rainbow(np.linspace(0, 1, len(model.centroids))) 
for ndv,dV in zip(dataVector_scaled,dataVector): 
  item = int(model.predict(ndv[None,:])) 
  dV[0] = int(round(model.centroids[item][0] * 255)) 
  dV[1] = int(round(model.centroids[item][1] * 255)) 
  dV[2] = int(round(model.centroids[item][2] * 255)) 

# Replace all the pixels in the original image with the centroid color 
for y in range(imageH): 



<matplotlib.image.AxesImage at 0x7f6cadad45d0>

    for x in range(imageW): 
        image[y, x,:]=[int(dataVector[y * imageW + x][0]),  
                                int(dataVector[y * imageW + x][1]), 
                                int(dataVector[y * imageW + x][2])] 

#display the image 
plt.imshow(image) 


