
Autoencoder With Neural Networks

"Autoencoding" is a data compression algorithm where the compression and decompression
functions are 1) data-speci�c, 2) lossy, and 3) learned automatically from examples rather than
engineered by a human. Additionally, in almost all contexts where the term "autoencoder" is
used, the compression and decompression functions are implemented with unsupervised neural
networks (i.e., no class labels or labeled data).

1) Autoencoders are data-speci�c, which means that they will only be able to compress data
similar to what they have been trained on. This is different from, say, the MPEG-2 Audio Layer III
(MP3) compression algorithm, which only holds assumptions about "sound" in general, but not
about speci�c types of sounds.An autoencoder trained on pictures of faces would do a rather
poor job of compressing pictures of trees, because the features it would learn would be face-
speci�c.

2) Autoencoders are lossy, which means that the decompressed outputs will be degraded
compared to the original inputs

3) Autoencoders are learned automatically from data examples, which is a useful property: it
means that it is easy to train specialized instances of the algorithm that will perform well on a
speci�c type of input. It doesn't require any new engineering, just appropriate training data.

To build an autoencoder, you need three things: an encoding function, a decoding function, and a
distance function between the amount of information loss between the compressed
representation of your data and the decompressed representation (i.e. a "loss" function).

Autoencoders are typically used for:

Dimensionality reduction (i.e., think PCA but more powerful/intelligent).
Denoising (ex., removing noise and preprocessing images to improve OCR accuracy)
Anomaly/outlier detection (ex., detecting mislabeled data points in a dataset or detecting
when an input data point falls well outside our typical data distribution).

Today two interesting practical applications of autoencoders are data denoising (which we
feature later in this post), and dimensionality reduction for data visualization. With appropriate
dimensionality and sparsity constraints, autoencoders can learn data projections that are more
interesting than PCA or other basic techniques.



We input a digit to the autoencoder. The encoder subnetwork creates a latent representation of
the digit. This latent representation is substantially smaller (in terms of dimensionality) than the
input. The decoder subnetwork then reconstructs the original digit from the latent
representation.

#Import libraries for neural network, numpy for matrix operations, and matplotlib f
#Keras library is a high level API for deep leanring and neural networks 

from keras.datasets import mnist 
from keras.layers import Input, Dense 
from keras.models import Model 
from keras import backend as b
from keras import initializers,regularizers 
from tensorflow.keras.optimizers import SGD,Adam 
import numpy as np 
import matplotlib.pyplot as plt 

Loading the MNIST dataset images and not their labels. We want to reconstruct the images as
output of the autoencoder and hence we do not need labels. Creating a training set and test set
and normalizing the data for better training.

(X_train, _), (X_test, _) = mnist.load_data() 

X_train = X_train.astype('float32')/255. 
X_test = X_test.astype('float32')/255. 

X_train = X_train.reshape(len(X_train), np.prod(X_train.shape[1:])) 
X_test = X_test.reshape(len(X_test), np.prod(X_test.shape[1:])) 
print(X_train.shape) 
print(X_test.shape) 

(60000, 784) 
(10000, 784) 



Our input image is a 2D matrix of size 28x28. When we represented it as a vector it has a
dimension of 784. We will encode it to 32 and the decode it back to the original dimension of
784

Encoded image will have a compression rate of 784/32=24.5

b.clear_session() 
#We need to take the input image of dimension 784 and convert it to keras tensors. 
input_img= Input(shape=(784,)) 
#We now create the encoder and the decoder based on the figure above. 
#Input image will be Encoded to 32 units and the activation will be relu and the in



encoded = Dense(units=32, activation='relu')(input_img) 
#Decoder will have 784 units as it needs to reconstruct the input image back to its
#As decoded is the output layer of the autoencoder we will use sigmoid activation f
#Sigmoid allows us to model the output as the presence of a white pixel or not.  
decoded = Dense(units=784, activation='sigmoid')(encoded) 
#We now create the autoencoder with input as the input image and output as the deco
autoencoder=Model(input_img, decoded) 
autoencoder.summary() 

Model: "model" 
_________________________________________________________________ 
 Layer (type)                Output Shape              Param #    
================================================================= 
 input_1 (InputLayer)        [(None, 784)]             0          
                                                                  
 dense (Dense)               (None, 32)                25120      
                                                                  
 dense_1 (Dense)             (None, 784)               25872      
                                                                  
================================================================= 
Total params: 50,992 
Trainable params: 50,992 
Non-trainable params: 0 
_________________________________________________________________ 

We train the autoencoder end to end, which has both the encoder and decoder parts.

#We can also extract the encoder which takes input as input images and the output i
encoder = Model(input_img, encoded) 
#let see the structure of the encoded model 
encoder.summary() 
#We now compile the autoencoder model with adadelta optimizer.  
#As pixels have a value of 0 or 1 we use binary_crossentropy as the loss function a
#i.e., the number of pixels that are correctly predicted. Alternativelly, we can th
autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_

Model: "model_1" 
_________________________________________________________________ 
 Layer (type)                Output Shape              Param #    
================================================================= 
 input_1 (InputLayer)        [(None, 784)]             0          
                                                                  
 dense (Dense)               (None, 32)                25120      
                                                                  
================================================================= 
Total params: 25,120 
Trainable params: 25,120 
Non-trainable params: 0 
_________________________________________________________________ 

#We now train the autoencoder using the training data with 20 epochs and batch size
autoencoder.fit(X_train, X_train, 
                epochs=20, 
                batch_size=256, 



                shuffle=True, 
                validation_data=(X_test, X_test) 
                ) 

Epoch 1/20
235/235 [==============================] - 5s 19ms/step - loss: 0.2779 - binar
Epoch 2/20
235/235 [==============================] - 3s 14ms/step - loss: 0.1710 - binar
Epoch 3/20
235/235 [==============================] - 3s 13ms/step - loss: 0.1443 - binar
Epoch 4/20
235/235 [==============================] - 3s 14ms/step - loss: 0.1284 - binar
Epoch 5/20
235/235 [==============================] - 3s 14ms/step - loss: 0.1179 - binar
Epoch 6/20
235/235 [==============================] - 3s 13ms/step - loss: 0.1105 - binar
Epoch 7/20
235/235 [==============================] - 3s 13ms/step - loss: 0.1054 - binar
Epoch 8/20
235/235 [==============================] - 3s 14ms/step - loss: 0.1017 - binar
Epoch 9/20
235/235 [==============================] - 3s 14ms/step - loss: 0.0991 - binar
Epoch 10/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0973 - binar
Epoch 11/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0961 - binar
Epoch 12/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0953 - binar
Epoch 13/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0947 - binar
Epoch 14/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0944 - binar
Epoch 15/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0941 - binar
Epoch 16/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0939 - binar
Epoch 17/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0937 - binar
Epoch 18/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0936 - binar
Epoch 19/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0935 - binar
Epoch 20/20 
235/235 [==============================] - 3s 13ms/step - loss: 0.0934 - binar
<keras.callbacks.History at 0x7f401c689cd0>

During training it is important to look at the loss. It should decrease. Similarly we should observe
that the accuracy has increased. Finally, you should also keep an eye at validation losses and
accuracies that they follow the same trends to identify over�tting.

Visualizing the Encoding



Predicting the test set. We want to view the encoded images as well as the reconstructed
images so we �t the test data on both autoencoder as well as encoder

encoded_imgs = encoder.predict(X_test) 
predicted = autoencoder.predict(X_test) 

Let’s plot the original input, encoded images and the reconstructed images using matplotlib

plt.figure(figsize=(40, 4)) 
for i in range(10): 
    # display original 
    ax = plt.subplot(3, 20, i + 1) 
    plt.imshow(X_test[i].reshape(28, 28)) 
    plt.gray() 
    ax.get_xaxis().set_visible(False) 
    ax.get_yaxis().set_visible(False) 
     
    # display encoded image 
    ax = plt.subplot(3, 20, i + 1 + 20) 
    plt.imshow(encoded_imgs[i].reshape(8,4)) 
    plt.gray() 
    ax.get_xaxis().set_visible(False) 
    ax.get_yaxis().set_visible(False) 
    # display reconstruction 
    ax = plt.subplot(3, 20, 2*20 +i+ 1) 
    plt.imshow(predicted[i].reshape(28, 28)) 
    plt.gray() 
    ax.get_xaxis().set_visible(False) 
    ax.get_yaxis().set_visible(False) 
     
plt.show()

Notice that the outputs are similar with the input. Furthermore, encodings of similar numbers
seem to share some patterns. The outputs are fuzzy though. We could try a deeper network or
train for longer.



The representations learned by autoencoders can be used for downstream tasks such as
classi�cation or regression. Furthermore, autoencoder variants provide ways to model and learn
distributions so that they can be used as generative models (e.g., Variational autoencoders
(VAEs)).


