ECE 805 - Machine Learning
Tutorial 4: Online Learning (13 February 2023)

Contents

1. Data pre-processing

2. Import libraries

3. Datasets

4. Online Gradient Descent

5. Prediction with Expert Advice
6. Links

1. Data pre-processing

1.1 Standardization, or mean removal and variance scaling

Standardization of datasets is a common requirement for many machine learning estimators implemented in scikit-learn; they
might behave badly if the individual features do not more or less look like standard normally distributed data: Gaussian with zero
mean and unit variance.

In practice we often ignore the shape of the distribution and just transform the data to center it by removing the mean value of
each feature, then scale it by dividing non-constant features by their standard deviation.

from sklearn import preprocessing
import numpy as np

X train = np.array(([1., -1., 2.1, 2., O., 0.],[0., 1., -1.11)
scaler = preprocessing.StandardScaler().fit (X train)

X_scaled = scaler.transform(X_train)
X_scaled

array([[O. , —1.22474487, 1.33630621],
[1.22474487, O. , —0.267261247,
[-1.22474487, 1.22474487, -1.06904497]1])

1.1.1 Scaling features to a range

An alternative standardization is scaling features to lie between a given minimum and maximum value, often between zero and
one, or so that the maximum absolute value of each feature is scaled to unit size. This can be achieved using MinMaxScaler or
MaxAbsScaler, respectively.

The motivation to use this scaling include robustness to very small standard deviations of features and preserving zero entries in
sparse data.

X _train = np.array([([1., -1., 2.],
(2., 0., 0.1,
[0., 1., -1.1])
min max scaler = preprocessing.MinMaxScaler ()

X train minmax = min max scaler.fit transform(X train)
X_train_minmax

array([[0.5 , 0. , 1. 1,
[1. , 0.5 , 0.33333333],
[0. , 1 , 0. 1)

The same instance of the transformer can then be applied to some new test data unseen during the fit call: the same scaling and shifting
operations will be applied to be consistent with the transformation performed on the train data:

X _test = np.array([[-3., -1., 4.11)
X test minmax = min max scaler.transform(X test)

X test minmax

array([[-1.5 ;0. ;, 1.66666667]])

1.2 Normalization

Normalization is the process of scaling individual samples to have unit norm. This process can be useful if you plan to use a
quadratic form such as the dot-product or any other kernel to quantify the similarity of any pair of samples. This assumption is
the base of the Vector Space Model often used in text classification and clustering contexts. The function normalize provides a
quick and easy way to perform this operation on a single array-like dataset, either using the I1, 12, or max norms:

X=1[r1t, -1., 2.1,
[2., 0., 0.1,
[0., 1., -1.1]

X _normalized = preprocessing.normalize (X, norm='1l2")

X normalized

.40824829, -0.40824829, 0.81649658]
, 0. , 0.]

array ([[’
’
, 0.70710678, -0.70710678]11)

[
[

o o

The preprocessing module further provides a utility class Normalizer that implements the same operation using the Transformer
API (even though the fit method is useless in this case: the class is stateless as this operation treats samples independently).

normalizer = preprocessing.Normalizer().fit (X) # fit does nothing
normalizer.transform(X)
normalizer.transform([[-1., 1., 0.]1)

array([[-0.70710678, 0.70710678, 0. 11)

1.3 Encoding

Often features are not given as continuous values but categorical. For example a person could have features ['male’, "female"],

["from Europe”, "from US", "from Asia"], ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]. Such features can

be efficiently coded as integers, for instance ['male”, "from US", "uses Internet Explorer"] could be expressed as [0, 1, 3] while

['female", "from Asia", "uses Chrome"] would be [1, 2, 1].

To convert categorical features to such integer codes, we can use the OrdinalEncoder. This estimator transforms each
categorical feature to one new feature of integers (0 to n_categories - 1):

enc = preprocessing.OrdinalEncoder (

X = [['male', '"from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']
enc.fit (X)
enc.transform([['female', 'from US', 'uses Safari'l])

array([[0., 1., 1.11)

1.4 Discretization

The Simplelmputer class provides basic strategies for imputing missing values. Missing values can be imputed with a provided
constant value, or using the statistics (mean, median or most frequent) of each column in which the missing values are located.
This class also allows for different missing values encodings.

The following snippet demonstrates how to replace missing values, encoded as np.nan, using the mean value of the columns
(axis 0) that contain the missing values:

1.4.1 K-bins discretization

KBinsDiscretizer discretizes features into k bins.By default the output is one-hot encoded into a sparse matrix (See Encoding
categorical features) and this can be configured with the encode parameter. For each feature, the bin edges are computed during
fit and together with the number of bins, they will define the intervals. Therefore, for the current example, these intervals are
defined as:

feature 1:

feature 2:

feature 3:

Based on these bin intervals, X is transformed as follows:

[-3., 5., 151,

[0., 6., 141,

[6., 3., 11 11)

est = preprocessing.KBinsDiscretizer(n bins=[3, 2, 2], encode='ordinal').fit (X)

X = np.array ([

est.transform(X)

array ([[0., 1.

1.4.2 Feature binarization

Feature binarization is the process of thresholding numerical features to get boolean values. This can be useful for downstream
probabilistic estimators that make assumption that the input data is distributed according to a multi-variate Bernoulli distribution.
For instance, this is the case for the BernoulliRBM.

It is also common among the text processing community to use binary feature values (probably to simplify the probabilistic
reasoning) even if normalized counts (a.k.a. term frequencies) or TF-IDF valued features often perform slightly better in practice.

As for the Normalizer, the utility class Binarizer is meant to be used in the early stages of Pipeline. The fit method does nothing as
each sample is treated independently of others:

binarizer = preprocessing.Binarizer () .fit (X) # fit does nothing

binarizer.transform (X)

array([[1l., 0., 1.1,
[1., 0., 0.1,
[0., 1., 0.11)

1.5 Imputation of missing values

One type of imputation algorithm is univariate, which imputes values in the i-th feature dimension using only non-missing values
in that feature dimension (e.g. impute.Simplelmputer). By contrast, multivariate imputation algorithms use the entire set of
available feature dimensions to estimate the missing values (e.g. impute.lterativelmputer).

1.5.1 Univariate feature imputation

The Simplelmputer class provides basic strategies for imputing missing values. Missing values can be imputed with a provided
constant value, or using the statistics (mean, median or most frequent) of each column in which the missing values are located.

This class also allows for different missing values encodings.

The following snippet demonstrates how to replace missing values, encoded as np.nan, using the mean value of the columns
(axis 0) that contain the missing values:

import numpy as np
from sklearn.impute import SimpleImputer

imp = SimpleImputer (missing values=np.nan, strategy='mean')
imp.fit([[1, 2], [np.nan, 3], [7, 6]])
X = [[np.nan, 2], [6, np.nan], [7, 6]

print (imp.transform (X))

[[4. 2.]
[6. 3.66666667]
[7. 6. 1]

1.5.2 Multivariate feature imputation

A more sophisticated approach is to use the Iterativelmputer class, which models each feature with missing values as a function
of other features, and uses that estimate for imputation. It does so in an iterated round-robin fashion: at each step, a feature
column is designated as output y and the other feature columns are treated as inputs X. A regressor is fit on (X, y) for knowny.
Then, the regressor is used to predict the missing values of y. This is done for each feature in an iterative fashion, and then is
repeated for max_iter imputation rounds. The results of the final imputation round are returned.

import numpy as np

from sklearn.experimental import enable iterative imputer
from sklearn.impute import IterativeImputer

imp = IterativeImputer (max iter=10, random state=0)
imp.fit([[1, 2], [3, 6], [4, 8], [np.nan, 3], [7, np.nanll)

X _test = [[np.nan, 2], [6, np.nan], [np.nan, 6]
the model learns that the second feature is double the first
print (np.round (imp.transform(X test)))

2. Import libraries

The following code allows us to import functions from other Jupyter Notebooks.

import io, os, sys, types

import nbformat

from IPython import get ipython

from IPython.core.interactiveshell import InteractiveShell

def find_notebook(fullname, path=None) :
"""find a notebook, given its fully qualified name and an optional path

This turns "foo.bar" into "foo/bar.ipynb"
and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
does not exist.
name = fullname.rsplit('.', 1)[-1]
if not path:
path = ['']
for d in path:
nb path = os.path.join(d, name + ".ipynb")
if os.path.isfile(nb_path):
return nb_path
let import Notebook Name find "Notebook Name.ipynb"
nb_path = nb_path.replace("_", " ")
if os.path.isfile(nb path):
return nb_path

class NotebookLoader (object) :
"""Module Loader for IPython Notebooks"™""
def init (self, path=None):
self.shell = InteractiveShell.instance ()
self.path = path

def load _module(self, fullname):
"""import a notebook as a module"""
path = find notebook (fullname, self.path)
print ("importing notebook from %s" % path)
load the notebook object

nb = nbformat.read(path, as_version=4)

create the module and add it to sys.modules
if name in sys.modules:

return sys.modules[name]

mod = types.ModuleType (fullname)

mod. file = path

mod._ loader__ = self

mod. dict_['get_ipython'] = get_ ipython
sys.modules[fullname] = mod

extra work to ensure that magics that would affect the user ns
actually affect the notebook module's ns

save_user_ns = self.shell.user ns

self.shell.user ns = mod. dict

try:
for cell in nb.cells:
if cell.cell type == 'code':
transform the input to executable Python
code = self.shell.input transformer manager.transform cell (cell.source)

run the code in themodule
exec(code, mod._dict_)
finally:
self.shell.user ns = save_user_ns

return mod

class NotebookFinder (object) :
"""Module finder that locates IPython Notebooks"""
def _ init_ (self):
self.loaders = {}

def find module(self, fullname, path=None):
nb_path = find notebook (fullname, path)
if not nb_path:

return
key = path
if path:

lists aren't hashable

key = os.path.sep.join (path)
if key not in self.loaders:

self.loaders[key] = NotebookLoader (path)
return self.loaders[key]

sys.meta_path.append(NotebookFinder())

Import the libraries we will be using.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from classifiers import Classifier

from sklearn.datasets import load breast cancer
from sklearn.preprocessing import StandardScaler

3. Datasets

3.1 Synthetic datasets

We will use the Circle synthetic dataset.

Circle dataset

x1l

def load_data(dataset_name) :
data = None

if 'circle' in dataset name:

data circle = pd.read csv('circle.csv').values

if 'drift' not in dataset_name:
data =
else:
data circle drifted =
data = np.r_ [data circle[:2500,

data circle

pd.read csv('circle drifted.csv').values
:], data _circle drifted[2500:, :]]
elif 'cancer'
data = load breast cancer (
data_x = data.data

data_y = data.target

in dataset name:

rescale data x

StandardScaler ()
data_x =
data =

sc =
sc.fit_transform(data_x)
np.c_[data x, data y]

return data

Let's see some example points from the "Circle” dataset.

load_data(dataset_name:'circle')[:5,:]

array([[0.0043977 , 0.19470524, 1. 1,
[0.29614308, 0.23157425, 1. 1,
[0.81230884, 0.85540437, 0. 1,
[0.54622862, 0.77018062, O. 1,
[0.2499697 , 0.24141536, 1. 11)

3.2 Real-world dataset

Wisconsin Breast Cancer

The classification task is to predict whether a breast mass is malicious or benign. Features are computed from a digitized image of a fine
needle aspirate (FNA) of a breast mass. FNA is a diagnostic procedure used to investigate masses where a needle is inserted into the mass for
sampling of cells. There exist 569 images with 30 features that describe characteristics of the cell nuclei present in the image (e.qg. radius,
perimeter, area). More details can be found here.

load_data(dataset_name:'cancer')[:2,:]

array([[1.09706398e+00, -2.07333501e+00, 1.26993369e+00,
9.84374905e-01, 1.56846633e+00, 3.28351467e+00,
2.65287398e+00, 2.53247522e+00, 2.21751501e+00,
2.25574689e+00, 2.48973393e+00, -5.65265059e-01,
2.83303087e+00, 2.48757756e+00, -2.14001647e-01,
1.31686157e+00, 7.24026158e-01, 6.60819941e-01,
1.14875667e+00, 9.07083081le-01, 1.88668963e+00,
-1.35929347e+00, 2.30360062e+00, 2.00123749e+00,
1.30768627e+00, 2.61666502e+00, 2.10952635e+00,
2.29607613e+00, 2.75062224e+00, 1.93701461e+00,
0.00000000e+001],
[1.82982061e+00, -3.53632408e-01, 1.68595471e+00,
1.90870825e+00, -8.26962447e-01, -4.87071673e-01,

-2
-8.

.38458552e-02, 5.
68652457e-01, 4.
2.63326966e-01, 7.

48144156e-01, 1.
.76243603e-01,
.05350847e-01,

99254601e-01,
42401948e-01,

39236330e-03,

-6.92926270e-01, -4.40780058e-01, 2.60162067e-01,
-8.05450380e-01, -9.94437403e-02, 1.80592744e+00,
-3.69203222e-01, 1.53512599e+00, 1.89048899e+00,
-3.75611957e-01, -4.30444219e-01, -1.46748968e-01,

1.08708430e+00, -2.43889668e-01, 2.81189987e-01,

0.00000000e+00]11)

4. Online Gradient Descent

4.1 Online learning framework

In online learning there is no separation between a training phase and a testing phase. Instead, learning is performed in a sequence of
consecutive rounds. Specifically, each time we receive an example, it is first considered as a test example which we attempt to predict its class.
The true class label is then received which can help us to improve our prediction for future examples.

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

Algorithm 1 Online learning
1: h%: classifier > e.g. Logistic Regression, Neural Network
2: for each time step t € [1,00) do

receive example z*

predict class label ¢ = h*~*(z?)

receive class label o

calculate loss L = [(yt, 4')

update classifier ht = Bt Ltrain(L)

Algorithm 1 Online Gradient Descent for Neural Network

1: hY: initialise neural network

2: A=0.99 > fading factor for prequential accuracy

3: preg_acc_s’ = 0.0

4: preg_acen’ = 0.0

5: for each time step ¢ € [1?)00) do

6: receive example z°

& predict class label ' = A'~!(z?) using forward computation

8: receive class label 7*

9: calculate logistic loss L = I(y*,%")

10: update classifier hﬁ R train(L) using backward computation

11: update preg_acc_s® = correct + A preg_acc st

12: update preg_accn® = 1.0 + A * preq_accsr™!

13: calculate preg_acc = % > for visualisation
Remarks

Online supervised learning (Line 5): It is assumed that the ground truth will be provided after the prediction and before the arrival of the next
instance. This might be fine in some applications, but not in all. Alternative paradigms are online active and online unsupervised learning.

One-pass learning (Line 6): It occurs when the classifier considers only the most recent example. Some online algorithms also consider
previously observed examples e.g. using a sliding window (“abrupt forgetting"). Some others use all previous examples but give a low priority to
old ones ("gradual forgetting").

Incremental learning (Line 7): It occurs when the same classifier is constantly updated. In some cases, a classifier can be discarded and a new

one starts learning from scratch.

4.2 Online Gradient Descent

Online Gradient Descent is almost identical to Stochastic Gradient Descent. Below is the pseudocode for Online Logistic Regression.

Algorithm 2 Online Gradient Descent for Logistic Regression

. hY: logistic regression

. for each time step t € [1,0) do

receive example z?

predict class label §' = sigm/((6'=1)Tz?)

: receive class label

: calculate logistic loss L = (3, 9') = —y'log(y') — (1 — y')log(1 —)

S U Wy

7 update classifier § 6 = 7" — a%
J

Auxiliary functions

def update preg metric(s_prev, n_prev, correct, fading_ factor=0.99):
s = correct + fading factor * s prev
n = 1.0 + fading factor * n_prev
metric = s / n

return s, n, metric

def plot results(simulation time, preq general accs, dataset name, flag store=False):
plt.figure (figsize=(5, 5))
plt.xlabel ('Time Step', fontsize=10, weight='bold')
plt.xticks (np.arange (0, simulation_time + 50, int(simulation_time / 5)), fontsize=15)
plt.x1im (0, simulation time)
plt.ylabel ('Accuracy', fontsize=10, weight='bold")
plt.yticks(np.arange (0.0, 1.1, 0.2), fontsize=15)
plt.ylim(0, 1)
plt.grid(linestyle="'dotted")

plt.plot (range(simulation time), preq general accs, linewidth=1.0)
if flag store:
plt.savefig('results/' + dataset name + '

plt.show()

-png')

Algorithm

def ogd(data params, cls params, t drift=2500, flag store results=False):
get data parameters
dataset name = data params|['dataset name']
num_features = data_params['num features']

load data
data = load data(dataset name)

create classifier
cls = Classifier (num_features, cls_params)

prequential evaluation
preqg_general accs = []

preq _general acc n = 0.0
preq_general _acc_s = 0.0

start
simulation_time = data.shape([0]
for t in range(simulation time):
if t % 500 ==
print ('Time step: ', t)

if t == t _drift and 'drift' in dataset_name:
preq_general acc n = 0.0
preq_general acc_s = 0.0

receive example

xy = datalt, :1]

x = xy[:-1]

x = np.reshape(x, (1, len(x))) # reshape vector (d,) to 1-d matrix (1,d)

predict class label
y_hat prob = cls.model.predict (x=x, verbose=0)
y_hat _class = np.around(y_hat_prob)

receive class label (ground truth)
y = xy[-1]
y = np.reshape(y, (1, 1)) # reshape from (1,) to (1,1

update (train) classifier
cls.train_cls(x, y)

check if prediction is correct
correct = 1 if y == y hat class else 0

update accuracy
preq_general acc_s, preq general acc n, preq general acc =

\

update preq metric(preq general acc_s, preq_general acc_n, correct)

preqg_general accs.append(preq general_acc)

plot results
plot results(simulation time, preq general accs, dataset name,

4.3 Simulation experiments (stationary data)

Classifer parameters

lr params = {

'cls_name': 'logistic_regression',
'learning rate': 0.01,
'momentum': 0.9

nn_params = {
'cls_name': 'neural network',
'learning rate': 0.01,
'momentum': 0.9,
'hidden units': 8,
'hidden_activation_fun': 'tanh'

Simulation - Circle dataset

circle params = {'dataset name': 'circle', 'num features': 2}
ogd(data params=circle params, cls_ params=nn_params)

flag store=flag store results)

WARNING:absl: 1r" is deprecated, please use "learning_rate’ instead, or use the le

Time step: ©

Time step: 500
Time step: 1000
Time step: 1500
Time step: 2000
Time step: 2500
Time step: 3000
Time step: 3500
Time step: 4000
Time step: 4500

1.0
p#ﬂqV»fnN\ﬂ1V?“ﬁm“ﬂﬂﬁiqi«“fwkﬁ#“vqﬂﬁ

OIS_J

0 1000 2000 3000 4000 5000
Time Step

Simulation - Breast Cancer dataset

cancer_params = {'dataset name': 'cancer', 'num features': 30}
ogd (data_params=cancer_params, cls_params=nn_params)

WARNING:absl: 1r" is deprecated, please use "learning_rate’ instead, or use the le
Time step: ©
Time step: 500

1.0 E—

08 4/

0.0 T T T T .
0 113 226 339 452 565

Time Step

4.4 Simulation experiments (nonstationary data)

Simulation: Drifted circle dataset

circle drift params = {'dataset name': 'circle drift', 'num features': 2}
ogd(data_params=circle drift params, cls_params=nn_params)

WARNING:absl: 1r® is deprecated, please use "learning_rate’ instead, or use the le
Time step: ©
Time step: 500
Time step: 1000
Time step: 1500
Time step: 2000
Time step: 2500
Time step: 3000
Time step: 3500
Time step: 4000
Time step: 4500

1.0
Yy

Z:"f Ulauate

0.0

0 1000 2000 3000 4000 5000

Time Step

5. Prediction with Expert Advice
In this algorithm, a set of experts (i.e. an ensemble of classifiers) provide their advice on the prediction task.
5.1 Weighted Majority

lz"weighted_majority"

Algorithm

def weighted majority(data_params, cls_params, num_classifiers=10,
get data parameters

dataset _name = data_params|['dataset name']
num_features = data_params['num_ features']
load data

data = load data(dataset name)
init ensemble

classifiers = [Classifier (num features, cls params, seed=i)

weights = [1.0 / num classifiers] * num classifiers
prequential evaluation

preq_general accs = []

preq general acc n = 0.0

preq_general acc_s = 0.0
start
simulation_time = data.shape([0]
for t in range (5000) :

if t % 500 == 0:
print ('Time step: ', t)

if t == t_drift and 'drift' in dataset_name:
preq_general acc n = 0.0
preq_general acc_s = 0.0

receive example

xy = datalt, :]

x = xy[:-1]

x = np.reshape(x, (1, len(x))) # reshape vector (d,) to 1-

receive class label (ground truth)

y = xy[-1]

y = np.reshape(y, (1, 1)) # reshape from (1,) to (1,1

experts_advice
experts advice prob = []
experts_advice cost = []
experts_advice_correct = []

for cls in classifiers:

y_hat prob = cls.model.predict (x=x, verbose=0)
y_hat_class = np.around(y_hat_prob)

correct = 1 if y == y_hat_class else 0

cost = 0 if y == y hat class else 1

experts_advice_prob.append(y_hat_prob[0] [0])
experts_advice correct.append(correct)
experts_advice_cost.append(cost)
output class prediction (deterministic version)
pred_class =
pred class = np.array([pred class])

correct = 1 if y == np.reshape(pred _class, (1, 1)) else 0
update weights of classifiers
weights = [weights[i]

weights = [w / sum(weights) for w in weights]
update classifiers
for cls in classifiers:

cls.train cls(x, y)

update accuracy
preq_general acc_s, preq general acc_n, preq general acc =

update preq metric(preq general acc_ s, preq general acc n,

preq_general accs.append(preq general_acc)
plot results
plot_results(simulation_time, preq general accs, dataset_ name,

Simulation: Drifted circle dataset

weighted majority(data_params=circle drift params,

* np.exp (- eta * experts_advice cost[i])

eta=0.5, t_drift=2500, flag_store_results=False):

for i in range(num classifiers)]

d matrix (1,d)

np.around (np.average (experts_advice prob, weights=weights))

for i in range (num classifiers)]

normalise weights

\

correct)

flag_store=flag_store_results)

cls_params=nn_params)

6. Links

Tutorials:

e Python 3
¢ NumPy

©® 2).386. oAokAnpwenKe oTIg 1:03 P.p.

https://docs.python.org/3/tutorial/
https://numpy.org/doc/stable/user/quickstart.html
https://scikit-learn.org/stable/modules/preprocessing.html

