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Outline 

▪ Unsupervised Learning

▪ Clustering

▪ K-means Algorithm

▪ Dimensionality Reduction

▪ Principal Component Analysis (PCA)
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Supervised Learning

Training set:  1 1 2 2 3 3( , ), ( , ), ( , ), ( , )N Nx y x y x y x y

Supervised learning: discover patterns in the data 

that relate data attributes with a target (class) 

attribute. 

- These patterns are then utilized to predict the 

values of the target attribute in future data 

instances. 
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Unsupervised Learning

Training set:  1 2 3, , , Nx x x x

Unsupervised learning: The data have no 

target attribute. 

- We want to explore the data to find some 

intrinsic structures in them. 
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Unsupervised Learning (UL) Applications 

▪ Methods

▪ Clustering

▪ Dimensionality Reduction

▪ Many more

▪ Applications

▪ Marketing and sales (personalization and market targeting)

▪ Identifying fake news

▪ Social network analysis

▪ Classifying network traffic

▪ Fraud detection
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What is UL for? 

▪ Let us see some real-life examples

▪ Example 1: groups people of similar sizes together to make “small”, 

“medium” and “large” T-Shirts.

▪ Tailor-made for each person: too expensive

▪ One-size-fits-all: does not fit all. 

▪ Example 2: In marketing, segment customers according to their 

similarities

▪ To do targeted marketing. 
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What is UL for? (cont…)

▪ Example 3: Given a collection of text documents, we want to organize 
them according to their content similarities,
▪ To produce a topic hierarchy

▪ In fact, clustering is one of the most utilized data mining techniques. 
▪ It has a long history, and used in almost every field, e.g., medicine, 

psychology, botany, sociology, biology, archeology, marketing, insurance, 
libraries, etc.

▪ In recent years, due to the rapid increase of online documents, text 
clustering becomes important. 
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Clustering

▪ Clustering is a technique for finding similarity groups in data, called clusters. 
I.e., 
▪ it groups data instances that are similar to (near) each other in one cluster and data 

instances that are very different (far away) from each other into different clusters. 

▪ Clustering is often called an unsupervised learning task as no class values 
denoting an a priori grouping of the data instances are given, which is the 
case in supervised learning. 

▪ Due to historical reasons, clustering is often considered synonymous with 
unsupervised learning.
▪ In fact, many other tasks are also unsupervised
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An illustration

▪ The data set has three natural groups of data points, i.e., 3 natural 

clusters. 
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Aspects of clustering

▪ A clustering algorithm
▪ Partitional clustering

▪ Hierarchical clustering

▪ …

▪ A distance (similarity, or dissimilarity) function

▪ Clustering quality

▪ Inter-clusters distance  maximized

▪ Intra-clusters distance  minimized

▪ The quality of a clustering result depends on the algorithm, the 
distance function, and the application.
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Distance functions

▪ Key to clustering. “similarity” and “dissimilarity” can also commonly 

used terms.

▪ There are numerous distance functions for 

▪ Different types of data

▪ Numeric data

▪ Nominal data

▪ Different specific applications
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Distance functions for numeric attributes

▪ Most commonly used functions are 

▪ Euclidean distance and 

▪ Manhattan (city block) distance

▪ We denote distance with: dist(xi, xj), where xi and xj are data points 

(vectors)

▪ They are special cases of Minkowski distance. h is positive integer.

𝑑𝑖𝑠𝑡(xi, xj) = ((𝑥𝑖1 − 𝑥𝑗1)
ℎ + (𝑥𝑖2 − 𝑥𝑗2)

ℎ+. . . +(𝑥𝑖𝑟 − 𝑥𝑗𝑟)
ℎ)

1
ℎ
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Euclidean distance and Manhattan distance 

▪ If h = 2, it is the Euclidean distance

▪ If h = 1, it is the Manhattan distance

▪ Weighted Euclidean distance

22
22

2
11 )(...)()(),( jrirjijiji xxxxxxdist −++−+−=xx
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Squared distance and Chebychev distance 

▪ Squared Euclidean distance: to place progressively greater weight on 

data points that are further apart. 

▪ Chebychev distance: one wants to define two data points as 

"different" if they are different on any one of the attributes. 

22
22

2
11 )(...)()(),( jrirjijiji xxxxxxdist −++−+−=xx

|)| ..., |,| |,max(|),( 2211 jrirjijiji xxxxxxdist −−−=xx
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Clustering: K-means algorithm

INPUT:

▪ K – number of clusters    hyperparameter

▪ Initial locations of cluster centroids

▪ Training set:

OUTPUT:

▪ Final locations of cluster centroids

𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁 𝑥𝑖 ∈ ℝ𝑛

𝜇1
0, 𝜇2

0, 𝜇3
0, … 𝜇𝐾

0 𝜇𝑖
0 ∈ ℝ𝑛

𝜇1
∗ , 𝜇2

∗ , 𝜇3
∗ , … 𝜇𝐾

∗ 𝜇𝑖
∗ ∈ ℝ𝑛
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Clustering: K-means algorithm 
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Clustering: K-means algorithm 

Cluster centroids
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Clustering: K-means algorithm 
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Clustering: K-means algorithm 

New cluster centroids
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Clustering: K-means algorithm 
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Clustering: K-means algorithm 



22

Clustering: K-means algorithm 
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Clustering: K-means algorithm 
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Clustering: K-means algorithm 
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Clustering: K-means algorithm 
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Clustering: K-means algorithm 
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When we have a new data point

New point

Assign to 

cluster with 

minimum 

distance
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Clustering: K-means algorithm

Randomly initialize K cluster centroids

Repeat{

for i = 1 to N

index of cluster centroid closest to

for k = 1 to K

average (mean) of points assigned to cluster k

}

:k =

𝜇1
0, 𝜇2

0, 𝜇3
0, … 𝜇𝐾

0 ∈ ℝ𝑛

 ( ) 1, 2, :ic K = ix
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Clustering: K-means optimization objective

index of cluster to which      is currently assigned

cluster centroid k 

centroid of cluster to which example       has been assigned

OPTIMIZATION OBJECTIVE: 

:k =

( )

2

(1) (2) ( )

1 2

1

1
( , , , , , , , ) i

N
N

K i c
i

J c c c x
N

   
=

= −

 ( ) 1, 2, :ic K = ix

( ) :ic
 = ix

(1) ( )

1

(1) (2) ( )

1 2
, ,

, ,

min ( , , , , , , , )
N

K

N

K
c c

J c c c

 

  
distortion
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Clustering: K-means algorithm

Randomly initialize K cluster centroids

Repeat{

for i = 1 to N

index of cluster centroid closest to

for k = 1 to K

average (mean) of points assigned to cluster k

}

:k =

0 0 0 0

1 2 3, , , n

K    

 ( ) 1, 2, :ic K = ix

(1) (2) ( )

1 2( , , , , , , , )N

KJ c c c   
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Clustering: K-means algorithm initialization

▪ Randomly pick K training points and set                              

equal to these points

▪ The initialization of the cluster centroids sometimes 

affects the final result (two runs of the K-means 

Algorithm may result in two different models)

▪ Some variants of the K-means Algorithm compute the 

initial positions of the centroids based on some 

properties of the dataset.

0 0 0 0

1 2 3, , , K   
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Clustering: K-means algorithm – local minima 

( )

2

(1) (2) ( )

1 2

1

1
( , , , , , , , ) i

N
N

K i c
i

J c c c x
N

   
=

= −
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For j = 1 to 100 {

➢ Randomly initialize K-means (Number of clusters K)

➢ Run K-means. Obtain:

➢ Computer cost function (distortion)

}

Pick clustering solution that gave the lowest distortion

K-means Algorithm – Random Initialization

(1) (2) ( )

1 2( , , , , , , , )N

KJ c c c   

(1) ( )

1, , , , ,N

Kc c  

(1) (2) ( )

1 2( , , , , , , , )N

KJ c c c   



34

K-means Algorithm – choosing the value of K

▪ Choosing the right number of clusters K is a difficult task. There are 

several methods, but none is optimal.

▪ One approach is to break up the dataset into training and test data 

and to use the concept of prediction strength to determine a suitable 

value of K.

▪ The cost function (distortion) can be used to find the relationship 

between the number of clusters and the distortion. However, as the 

number of clusters increases, the distortion may decrease, but there 

are trade-offs. 
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Strengths of k-means 

▪ Strengths: 

▪ Simple: easy to understand and to implement

▪ Efficient: Time complexity: O(tKN), 

where N is the number of data points, 

K is the number of clusters, and 

t is the number of iterations. 

▪ Since both K and t are small. k-means is considered a linear algorithm. 

▪ K-means is the most popular clustering algorithm.

▪ Note that: it terminates at a local optimum if sum of squared errors is used. 

The global optimum is hard to find due to complexity. 
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Weaknesses of k-means

▪ The algorithm is only applicable if the mean is defined. 

▪ For categorical data, K-mode - the centroid is represented by most 

frequent values. 

▪ The user needs to specify K.

▪ The algorithm is sensitive to outliers

▪ Outliers are data points that are very far away from other data points. 

▪ Outliers could be errors in the data recording or some special data points 

with very different values. 
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Weaknesses of k-means: Problems with 

outliers
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Weaknesses of k-means: To deal with outliers

▪ One method is to remove some data points in the clustering process that 

are much further away from the centroids than other data points. 

▪ To be safe, we may want to monitor these possible outliers over a few iterations and 

then decide to remove them. 

▪ Another method is to perform random sampling. Since in sampling we only 

choose a small subset of the data points, the chance of selecting an outlier 

is very small. 

▪ Assign the rest of the data points to the clusters by distance or similarity comparison, 

or classification
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Weaknesses of k-means (cont …)

▪ The algorithm is sensitive to initial seeds.
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Weaknesses of k-means (cont …)

▪ If we use different seeds: good results
There are some 

methods to help 

choose good 

seeds
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Weaknesses of k-means (cont …)

▪ The k-means algorithm is not suitable for discovering clusters that are 

not hyper-ellipsoids (or hyper-spheres). 

+
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K-means summary

▪ Despite weaknesses, K-means is still the most popular algorithm due 
to its simplicity, efficiency
▪ other clustering algorithms have their own lists of weaknesses.

▪ No clear evidence that any other clustering algorithm performs better 
in general 
▪ although they may be more suitable for some specific types of data or 

applications. 

▪ Comparing different clustering algorithms is a difficult task. No one 
knows the correct clusters!
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Other Clustering Algorithms

▪ DBSCAN (density-based spatial clustering of applications with noise). It is 

density based, as opposed to centroid-based (K-means). The advantage of 

DBSCAN is that it build clusters of arbitrary shape, while centroid-based 

algorithms create clusters that have the shape of a hypersphere. However, 

it has two hyperparameters to be selected.  

▪ HDBSCAN (hierarchical DBSCAN). This is an advanced version of 

DBSCAN, with only one hyperparameter to be selected.

▪ Gaussian Mixture Model (GMM). An example (input point) may be a 

member of several clusters with different membership score.

▪ Fuzzy Clustering. Referred to as soft clustering or soft K-means, as 

compared to hard clustering (DBSCAN and K-means). 
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Dimensionality Reduction – Motivation

▪ Data compression

▪ Data visualization

▪ Interpretability of learning procedure

▪ Working in high-dimensional spaces can be undesirable:

▪ raw data are often sparse as a consequence of the curse of 

dimensionality, 

▪ analyzing the data is usually computationally intractable (hard to control 

or deal with). 

▪ Dimensionality reduction is common in fields that deal with large numbers of 

observations and/or large numbers of variables
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Dimensionality Reduction – Examples

▪ Principal Component Analysis (PCA)

▪ Kernel PCA

▪ Linear discriminant analysis (LDA)

▪ Find a linear combination of features that characterizes or separates two 
or more classes of objects or events.

▪ t-distributed Stochastic Neighbour Embedding (t-SNE)

▪ a nonlinear dimensionality reduction technique useful for visualization of 
high-dimensional datasets.

▪ Autoencoders

▪ Learn nonlinear dimension reduction functions and codings
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Principal Component Analysis (PCA)

▪ Nonparametric method for obtaining relevant information from 

complex datasets. 

▪ It is one of the oldest dimensionality reduction methods.

▪ It is a technique used to emphasize variation and bring out strong 

patterns in a dataset by highlighting similarities and differences. 

▪ PCA is mainly an exploratory technique that can be used to gain better 

understanding of the correlation between variables. 
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Principal Component Analysis (PCA) (2)

▪ Principal Component Analysis transforms a data set into a new orthogonal 
coordinate system in which data is centered and the features are 
completely uncorrelated

▪ The mean of the new data is 0

▪ The covariance of any pair of distinct features is 0

▪ The features are transformed through vectors called principal components 
that define a new coordinate system. 

▪ Principal components are sorted in descending order by variance i.e., the 
first component has the largest variance

▪ Components with low variance can be discarded, making PCA a method of 
dimensionality reduction.



48

Principal Component Analysis (PCA)

▪ The first axis (first principal 

component) is in the direction of 

largest variation.

▪ The second axis is orthogonal to 

the first axis and goes in the 

direction of second highest 

variance in the data. 

▪ The third axis is orthogonal to 

both the first and second axis, 

and so on. 
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PCA problem formulation

▪ Reduce from 2-dimension to 1-dimension: 

Find a direction (a vector                ) onto 

which to project the data so as to minimize 

the projection error. 

▪ Reduce from N-dimension to K-dimension: 

Find K vectors onto which to project the 

data, so as to minimize the projection error

𝑢1 ∈ ℝ𝑛
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PCA Process

▪ First, we need to center our data

▪ ො𝑥𝑖𝑗 = 𝑥𝑖𝑗 − 𝜇𝑖, 𝜇𝑖 =
1

𝑁
σ𝑗=1
𝑁 𝑥𝑖𝑗,  𝑥 ∈ ℝ𝑛, 𝑁 is number of data points

▪ Then we compute covariance matrix 𝑆 for centered data and find its 
eigenvectors 𝑣 and eigenvalues 𝜆.

▪ 𝑆 =
1

𝑁
𝑋𝑋𝑇 , 𝑆 ∈ 𝑛, 𝑛 , 𝑋 ∈ [𝑛, 𝑁]

▪ 𝑆𝑣 = 𝜆𝑣, 𝑣 = 𝑛, 1 , 𝜆 ∈ ℝ

▪ Sort eigenvectors by corresponding eigenvalues in descending order

▪ Then we form matrix 𝐵 from first 𝑀 eigenvector and perform 
dimensionality reduction

▪ 𝑋∗ = 𝐵𝑇𝑋, 𝐵 ∈ 𝑛,𝑀 , 𝑋∗∈ [𝑀,𝑁]

𝑋 =

ො𝑥11
ො𝑥12

ො𝑥21
ො𝑥22

⋯
⋯

ො𝑥𝑁1
ො𝑥𝑁2

⋮
ො𝑥1𝑛

⋮
ො𝑥2𝑛

⋱
⋯

⋮
ො𝑥𝑁𝑛

𝐵 =

𝑣11
𝑣12

𝑣21
𝑣22

⋯
⋯

𝑣𝑀1

𝑣𝑀2

⋮
𝑣1𝑛

⋮
𝑣2𝑛

⋱
⋯

⋮
𝑣𝑀𝑛
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Limitations

▪ PCA does not consider non-linear correlations:

▪ PCA does not take labels into account, only variance of features:
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Principal Component Analysis (PCA) – Comments

▪ PCA is not a linear regression

▪ Preprocessing of data (feature scaling, normalization) is required

▪ Singular Value Decomposition (SVD) is  key tool for computing the principal 
components.  [U, S, V] = svd(Sigma)

▪ Reconstruction from compressed representation

▪ Choosing the number of principal components

▪ Application of PCA is mainly:

▪ To reduce memory needed to store data

▪ To speed up learning algorithm

▪ To reduce overfitting, use regularization not PCA
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Why not PCA for visualization?

▪ Recall the PCA objective: project data onto a lower dimensional 

subspace, such that the variance is maximized

▪ Why the bad results?

1. Linear projection 

2. Mostly preserves distances between dissimilar points

➢ Is this really what we want for the purpose of 

visualization? 
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t-SNE

▪ t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear 

dimensionality reduction and visualization technique

▪ It maps the data points in a lower-dimensional space, such that points 

which were close in the original space remain close in the embedding space

▪ It focuses on preserving local structure and does not preserve global structure

▪ The results are non-deterministic

▪ It is computationally expensive

▪ t-SNE does not produce a transformation of the space, it generates an 

embedding into a completely new space

▪ The features in the new space are difficult to interpret
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Are we overfitting?

Machine Learning Visualization

Goal: Generalization 

Given a training set,

do well on a test set.

Overfitting is undesirable

Goal: Visualization

We just want to “do well”

on our data (“training set”)

“Overfitting” is desirable

versus
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Autoencoder

▪ Type of neural network with encoder-
decoder architecture.

▪ It is trained to reconstruct the input. We 
want the output of the autoencoder to be as 
similar to the input as possible. 

▪ The Bottleneck Layer in the middle has much 
lower dimension than the input.

▪ A denoising autoencoder corrupts in input 
signal during the training by adding some 
random perturbation to the features.

▪ Effectively used in many applications: face 
recognition, acquiring the semantic meaning 
of words, anomaly detection, drug discovery, 
etc. 
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Summary

▪ Unsupervised Learning

▪ No labels just the data

▪ Grouping-Clustering

▪ K-means

▪ Dimensionality reduction

▪ PCA

▪ Autoencoders/Representation learning/Generative Models
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