

MSc on Intelligent Critical Infrastructure Systems

Machine Learning

Lecture 7: Feature engineering, Evaluation

Kleanthis Malialis

Research Associate KIOS Research and Innovation Center of Excellence

University University of Cyprus of Cyprus

FUNDED BY:

Imperial College London

Course outline

Week 1

- Introduction and Preliminaries
- Week 2
 - Linear Regression
 - Regularisation, Logistic Regression, SVMs

Week 3

- Neural Networks and Deep Learning
- Week 4
 - Feature Engineering and Evaluation
 - Online Learning

• Week 5

- Unsupervised Learning
- Week 6
 - Reinforcement Learning
- Week 7
 - Monitoring and Control

Kôľoc

Recap

Linear / Logistic Regression

- Fast, scalable, easy to understand and implement.
- It often achieves a descent performance.

Support Vector Machines (SVMs)

- Idea: Transform the original space to a higher dimensional so that data become linearly separable.
- Superior performance (structured data, e.g., tabular).
- It doesn't scale well with big data.

Neural Networks

- Idea: Representation learning
- Superior performance (unstructured data, e.g., images).
- It scales well with big data.

K S ľOC

Feature Engineering

www.kios.ucy.ac.cy

K S O C S O S O

- Feature engineering is the process of using domain knowledge of the data to create features that enhance machine learning algorithms. Basically, it transforms raw data into a dataset.
- If feature engineering is done correctly, it increases the predictive ability of machine learning algorithms.
- Feature engineering is an art!

STEPS FOR ML

- Data gathering
- Data cleaning
- Feature engineering
- Model selection
- Model training and testing

Categorical features

- Some algorithms are heavily affected by categorical data.
- Integer vs. one-hot encoding
- If the order of the feature's values is not important then using integer encoding may affect the learning algorithm, e.g., countries are not sequential!

Skewed (high-cardinality) categorical features

Frequency-based

Keep the values that correspond to the most frequent ones (e.g., 90%).

number of

occurrences

Group the rest as "Other" (e.g., 10%).

E.g., group "post codes" in to "areas"

Prediction power-based

Group as "Other" those which have less predictive power

Kõloç

"Other"

categories of a feature

Visual inspection. Calculate metrics, e.g., skewness.

Skewed numerical features

Log transformations

Identify skewness

$$x \leftarrow \log(x + c)$$

• Power transformations

$$x \leftarrow (x)^p$$

23

0

9

www.kios.ucy.ac.cy

Skewed class

- Class imbalance occurs when at least one class is under-represented

 minority
 class
 - $p(y = y_0) \gg p(y = y_1)$
- Algorithm-level approach
 - Cost-sensitive learning
 - Anomaly detection
 - One-class classification

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{w}_{y^{i}} L(\hat{f}(x^{i}), y^{i})$$

Data-level approach

....

- Undersampling the majority class (e.g., random)
- **Oversampling** the minority class (e.g., SMOTE, data augmentation)

K Š ÍOC

Skewed class: SMOTE

Repeat:

- A minority class instance is selected at random
- Select K nearest neighbours
- Select N of K to create synthetic points using interpolation

•
$$r_i = x_i + rand(0,1) \times (x_i - n_i)$$

K S log

Skewed class: Data augmentation

- Data augmentation is applied to a dataset to expand its size by artificially creating variations of the data.
- It enhances the diversity of the dataset which could improve the learning performance, and improve generalisation.

KõĩOG

Binning (or Bucketing)

- Converting a **numerical** feature into a categorical feature
- Example 1: 3 bins

$$\begin{aligned} \alpha &= \mu \ -k \times \sigma \\ \beta &= \mu + k \times \sigma \end{aligned}$$

$$x = \begin{cases} 0 \text{ if } x \leq a \\ 1 \text{ if } a < x < b \\ 2 \text{ if } x \geq b \end{cases}$$

- **Example 2:** representation of age
 - Instead of age (e.g., 1 100) use age bins (e.g., 1-12 child, 13-17 teenager, 18 59 adult, 60 100 senior).
- Advantages
 - Binning can help the learning algorithm to learn using fewer examples.
 - Similar to giving "hints" to the learning algorithm.

Kõĩoç

Missing values

- Remove the examples with missing features.
- Use a **data imputation** method.
 - Numerical features
 - Replace the missing value of a feature by its average value, or the middle of the range values, or use interpolation (for time-series data).
 - Use regression to estimate the missing feature value.
 - Categorical data
 - Replace the missing value by the most frequent value of a feature.
 - Replace the missing value with a value outside the normal range of values for that feature.

Kôĩog

Outliers

- The presence of outliers may "confuse" a learning algorithm.
- Identify outliers:

$$\begin{array}{l} x < \mu - 2.5 \ \sigma \\ x > \mu + 2.5 \ \sigma \end{array} \qquad \qquad \begin{array}{l} x < Q1 - 1.5 \ IQR \\ x > Q3 + 1.5 \ IQR \end{array}$$

- Discard outliers
 - Note: It may not be an option in some areas, e.g., CIs or Healthcare.
- Choose a learning algorithm that is robust to outliers.

<<i>íog

Feature scaling

 Normalization converts the raw range of numerical feature into a standard range of values (usually, [-1, 1] or [0, 1]).

 Standardization rescales the numerical values of a feature so that it has a standard normal distribution (mean = 0; standard deviation = 1).

 $x \leftarrow \frac{x - \mu}{-\mu}$

Wo

 Both normalization and standardization may improve the learning speed.

Which one to use?

- No clear winner!
- Rule of Thumb: use normalization except in the following cases:
 - If the values of a feature are close to a bell curve
 - If the feature has extremely high or low values (outliers)

Non-iid data

• In statistical learning, it is assumed that the training data (X, y) consists of examples that are <u>independently</u> drawn from the <u>same</u> joint distribution $p_{X,y}$.

- Temporal correlations (e.g., time-series data) affect learning algorithms
 - Time-series forecasting
 - Time-series classification

K S O S O S O

Non-iid data: Traditional approach

Traditional approach

- Each example is of the form: $s^{t} = \langle s_{1}^{t}, s_{2}^{t}, s_{3}^{t} \rangle$
- Typically, it yields a poor performance.

Non-iid data: Sliding window approach

Sliding window approach

- Consider a window of size W:
 - $s_1^t = < s_1^t, s_1^{t-1}, \dots, s_1^{t-W} >$
 - $s_2^t = \langle s_2^t, s_2^{t-1}, \dots, s_2^{t-W} \rangle$
 - $s_3^t = \langle s_3^t, s_3^{t-1}, \dots, s_3^{t-W} \rangle$
- Each example is now of the form: $\mathbf{x}^t = < s_1^t, s_2^t, s_3^t >$
- Use x^t (instead of s^t) as input to the learning algorithm.
- Additionally:
 - LSTM
 - Further feature extraction

Sole

Low-variance features

- If the variance of a feature is (close to) zero, then the feature is (approximately) constant.
- These features are likely not to contain sufficient information to contribute to the prediction.
- Tuning is required to set an appropriate variance threshold.

KõĩOÇ

Evaluation

www.kios.ucy.ac.cy

K S O S O S O

Learning algorithm selection

- Number of features and examples
- In-memory vs. out-of-memory
- Type of data (e.g., tabular, images, time-series)
- Type of features (categorical, numerical)
- Nonlinearity of data
- Training speed and prediction speed
- Explainability (Explainable AI)

 \rightarrow Possible to try various learning algorithms and select one by testing on validation test.

Training set

Test set

Validation set

KõĩOS

Model selection and assessment

Model selection

• Estimating the performance of different models in order to choose the best one.

Model assessment

 Having chosen a final model, estimating its prediction (i.e., generalization) error on new data.

Kõĩoç

- Training set: is used to fit the models.
- Validation set: is used to estimate prediction error for model selection.
- Test set: is used for assessment of the generalization error of the final chosen model.
 - "Ideally, the test set should be kept in a "vault," and be brought out only at the end of the data analysis".
- Notes:
 - Use stratified splits.
 - The validation and test sets should come from the same distribution.

Kõlog

k-Fold cross-validation

Test set

• Typical choice is stratified 10-fold CV.

- Leave-One-Out Cross-Validation (LOOCV)
 - Special case when # of folds = # of training examples (i.e., k = N).

K <

<br

Hyper-parameter search

• Rule of thumb:

- For algorithms with **a few** hyper-parameters, use grid search.
- For algorithms with **many** hyper-parameters, and of different **importance**, use random search.

Kôľog K

K Š O Č S O

Classification metrics

Accuracy

Example:

- IO Positive class, 990 Negative class
- Prediction: 1000 Negative class
- Accuracy 99%

Classification metrics (cont'd)

Precision

true positive predicted positive

 Recall (Sensitivity)

$$R = \frac{TP}{TP + FN}$$

true positive actual positive

F-score

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

• F1-score • $\beta = 1 \rightarrow$ harmonic mean

$$F_1 = \frac{2PR}{P+R}$$

www.kios.ucy.ac.cy

K Č Č

Bias and Variance

- Main reasons for underfitting (high bias)
 - Model is too simple for the data
 - Features not sufficiently suitable to describe the underlying correlations
- Main reasons for overfitting (high variance)
 - Model is too complex for the data
 - Too many features but small number of training examples
- How to address the overfitting problem
 - Try a simpler model
 - Reduce the dimensionality (dimensionality reduction)
 - Reduce the number of features (feature selection)
 - Add more training data
 - Regularize the learning model

Kôľog

Learning curves

www.kios.ucy.ac.cy

Kôľog