
funded by:

Machine Learning
Lecture 12: Reinforcement Learning (part II)

Kleanthis Malialis
Research Associate

KIOS Research and Innovation Center of Excellence 

University of Cyprus

MSc on Intelligent Critical Infrastructure Systems



Course outline

§ Week 1
§ Introduction and Preliminaries

§ Week 2
§ Linear Regression
§ Regularisation, Logistic Regression, SVMs

§ Week 3
§ Neural Networks and Deep Learning

§ Week 4
§ Feature Engineering and Evaluation
§ Online Learning

§ Week 5
§ Unsupervised Learning

§ Week 6
§ Reinforcement Learning

§ Week 7
§ Monitoring and Control



Recap

§ Key characteristics of RL
§ “carrot and stick” approach, i.e., reward / penalty signals
§ sequential decision making / control tasks
§ delayed rewards

§ Markov Decision Process (MDP)

§ Discounted expected return and Value functions

§ Temporal-Difference (TD) learning
§ On-policy (SARSA) vs off-policy (Q-learning) control
§ Exploration – exploitation dilemma
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Outline

§ Tabular solution methods (cont’d)

§ Approximate solution methods

§ Multi-agent RL

§ Imitation learning
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TABULAR SOLUTION METHODS (CONT’D)
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Maximisation bias
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𝑄 𝑆! , 𝐴! ← 𝑄 𝑆! , 𝐴! + 𝛼[𝑅!"# + 𝛾max$ 𝑄(𝑆!"#, 𝑎) − 𝑄(𝑆! , 𝐴!)]

Q-learning

Old Q-value Old Q value

Discount factor

Immediate 
reward Estimate of optimal 

future value
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Learning rate



Double Q-learning

§ Learn two independent Q functions, on different sets of 
experience.

§ The first Q-function is used for action selection.
§ The second Q-function is used for action evaluation.
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At each time step:
with 50% probability:

Q! 𝑆" , 𝐴" = Q! 𝑆" , 𝐴" + 𝛼[𝑅"#! + 𝛾𝑸𝟐(𝑆"#!, 𝐚𝐫𝐠𝐦𝐚𝐱𝒂𝑸𝟏(𝑺𝒕#𝟏, 𝒂)) − Q!(𝑆" , 𝐴")]
else:

Q( 𝑆" , 𝐴" = Q( 𝑆" , 𝐴" + 𝛼[𝑅"#! + 𝛾𝑸𝟏(𝑆"#!, 𝐚𝐫𝐠𝐦𝐚𝐱𝒂𝑸𝟐(𝑺𝒕#𝟏, 𝒂)) − Q((𝑆" , 𝐴")]



Convergence criteria

§ The environment’s states are Markov states.
§ An agent visits all state-action pairs infinitely often.
§ The learning rate reduces to zero.
§ The exploration rate reduces to zero (for SARSA).
§ Bounded rewards. 
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Tabular solution methods
§ So far, we have represented the value function Q as a lookup table 

with an entry for every state-action pairs (s, a)

§ Recall that one of the convergence criteria of Q-learning is for an 
agent to visit all state-action pairs infinitely often.

§ Problems:

§ In some cases, it is impossible to satisfy the above criterion, e.g., the 
game of Go (19x91) has 10170 states.

§ Some domains require continuous state and/or action space (e.g., 
mobile robot).

§ Too many states and/or actions to store in memory.

§ Too slow to learn the value for each state-action.
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APPROXIMATE SOLUTION METHODS
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RL with function approximation

§ Use function approximation to estimate the value function, and
generalise from seen states to unseen states.

§ The approximate value function is not represented as a table, but 
as a parameterized functional form.

§ Approximate solution methods:

§ Linear methods

§ Deep RL
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Linear methods

§ The approximate function 𝑣(𝑠; 𝑤) is a linear function of the weight 
vector 𝑤 = (𝑤#, 𝑤%, … , 𝑤&).

§ Corresponding to each state s, there is a real-valued vector 
𝑥 𝑠 = (𝑥# 𝑠 , 𝑥% 𝑠 , … , 𝑥&(𝑠)).

§ Linear methods approximate the state value function as follows:
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𝑣 𝑠;𝑤 = 𝑤'𝑥 𝑠 =:
()#

&

𝑤(𝑥((𝑠)



Tile Coding

§ Tile Coding partitions the state space into tilings, each tiling is further 
partitioned into tiles where state feature values are grouped into.

§ The number of tilings indicate the degree of resolution.
§ The size / shape of tiles indicate the nature of generalisation.
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Tile Coding (2)

§ If the state is inside a tile, then the corresponding feature has the value 1, 
otherwise the feature is 0. This kind of 0/1-valued feature is called a binary 
feature.

§ Tile Coding activates 𝑚 < 𝑑 tiles: 

§ The Q-value is now calculated as:

§ The update rule is then:
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𝑇𝐶 𝑠 → (𝑥!, 𝑥", … , 𝑥#)

𝑄 𝑠, 𝑎 = 𝑄 𝑇𝐶 𝑠 , 𝑎 =-
$%!

#

𝑄(𝑥$ , 𝑎)

𝑄 𝑥$ , 𝑎 = 𝑄 𝑥$ , 𝑎 +
𝛼
𝑚
Δ𝑄

Δ𝑄 = 𝑟 + 𝛾max
&
𝑄(𝑠', 𝑎) − 𝑄(𝑠, 𝑎)



Tile Coding (3)
§ Tilings need not be grids, they can be arbitrarily shaped and non-uniform. 

However, these are rarely used in practise as Tile Coding is flexible and 
computationally efficient.
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Mastering the game of Backgammon (IBM, 1995)
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§ One of the earliest and most impressive applications of RL to date is TD-
Gammon by Gerald Tesauro.

§ The algorithm combined TD-learning with non-linear function approximation 
using a multi-layered neural network.

Paper

https://www.csd.uwo.ca/~xling/cs346a/extra/tdgammon.pdf


Human-level control of Atari games (DeepMind, 2015)

§ DeepMind (U.K.) was bought by Google for $500M in 2014!
§ The Deep Q-Network (DQN) agent, receiving only the pixels and the game score 

as inputs, was able to achieve a level comparable to that of a professional human 
games tester across a set of 49 games, using the same algorithm, network 
architecture and hyperparameters.
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Paper, video

https://www.nature.com/articles/nature14236
https://www.youtube.com/watch?v=TmPfTpjtdgg&ab_channel=DeepMind


Deep RL

§ Neural networks as functions approximators have been around for 
a long time (e.g., TD-Gammon 1995).

§ Key elements introduced by DQN:
§ Neural network architecture
§ Experience replay
§ Target network
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DQN: Neural architecture

§ Input: Current state vector
§ Output: Contrary to the traditional RL setup, DQN produces a Q-value 

for each state-action pair in a single forward pass. 
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Naive DQN



DQN: Neural architecture (2)

§ Input: Current state vector
§ Output: Contrary to the traditional RL setup, DQN produces a Q-value 

for each state-action pair in a single forward pass. 
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DQN: Experience replay

§ Inspired from biological systems
§ Neuroscientists have discovered that spontaneous recollections, 

measured directly in the brain, often occur as very 
fast sequences of multiple memories. Neural “replay” sequences 
were originally discovered by studying the hippocampus in rats.

§ Experience replay
§ Contrary to the traditional RL setup, all experiences
𝐞𝐭 =< 𝒔𝒕, 𝒂𝒕, 𝒓𝒕*𝟏, 𝒔𝒕*𝟏 > are stored in a memory / buffer.
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< 𝒔𝟏, 𝒂𝟏, 𝒓𝟐, 𝒔𝟐 >
< 𝒔𝟐, 𝒂𝟐, 𝒓𝟑, 𝒔𝟑 >
< 𝒔𝟑, 𝒂𝟑, 𝒓𝟒, 𝒔𝟒 >

…
< 𝒔𝒕&𝟏, 𝒂𝒕&𝟏, 𝒓𝒕, 𝒔𝒕 >
< 𝒔𝒕, 𝒂𝒕, 𝒓𝒕'𝟏, 𝒔𝒕'𝟏 >



DQN: Experience replay (2)
§ Advantages

§ Each experience can potentially be used for many updates, thus being more 
data efficient.

§ Some experiences may be rare; it’d be useful if we could recall them.

§ Problem: Sample correlations
§ It causes instability in the NN’s performance.
§ Solution: Draw a random sample

from the pool of experiences, and
use that to train the network.
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< 𝒔𝟏, 𝒂𝟏, 𝒓𝟐, 𝒔𝟐 >
< 𝒔𝟐, 𝒂𝟐, 𝒓𝟑, 𝒔𝟑 >
< 𝒔𝟑, 𝒂𝟑, 𝒓𝟒, 𝒔𝟒 >

…
< 𝒔𝒕&𝟏, 𝒂𝒕&𝟏, 𝒓𝒕, 𝒔𝒕 >
< 𝒔𝒕, 𝒂𝒕, 𝒓𝒕'𝟏, 𝒔𝒕'𝟏 >

< 𝒔𝟏, 𝒂𝟏, 𝒓𝟐, 𝒔𝟐 >
< 𝒔𝟑, 𝒂𝟑, 𝒓𝟒, 𝒔𝟒 >

< 𝒔𝒕, 𝒂𝒕, 𝒓𝒕'𝟏, 𝒔𝒕'𝟏 >

sample
pool



DQN: Loss function

§ DQN brings Q-learning closer to supervised learning (backpropagation, 
stochastic / mini-batch GD) while still allowing it to bootstrap.
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𝑄 𝑆', 𝐴' ← 𝑄 𝑆', 𝐴' + 𝛼[𝑅'() + 𝛾max* 𝑄(𝑆'(), 𝑎) − 𝑄(𝑆', 𝐴')]

TD error

𝐿 =
1
2
𝑅'() + 𝛾max* 𝑄(𝑆'(), 𝑎; 𝑤) − 𝑄(𝑆', 𝐴'; 𝑤)

+

target prediction

Δ𝑤 = 𝛼 𝑅'() + 𝛾max* 𝑄 𝑆'(), 𝑎; 𝑤 − 𝑄 𝑆', 𝐴'; 𝑤 ∇,𝑄 𝑆', 𝐴'; 𝑤



DQN: Target network
§ Problem: Non-stationary target

§ The loss function’s dependence on 𝑤 complicates the process compared to the 
simpler supervised-learning situation in which the targets do not depend on the 
parameters being updated. This is another source of instability.

§ Solution: Fix Q-targets
§ To address the non-stationary target issue, DQN uses a separate target network 

(𝑸∼) to estimate the target. The target network has the same architecture as the 
function approximator but with frozen parameters. The parameters from the 
prediction network are copied to the target network at every C iterations.
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𝐿 =
1
2
𝑅'() + 𝛾max* 𝑄∼(𝑆'(), 𝑎; 𝑤) − 𝑄(𝑆', 𝐴'; 𝑤)

+

target prediction



DQN: other elements
§ State

§ A human playing any Atari game sees 210x160 pixel image frames with 128 
colors at 60Hz. To reduce memory and processing requirements, the authors 
preprocessed each frame to produce an 84x84 array of luminance values.

§ The authors “stacked” the four most recent frames so that the input 
dimension is 84x84x4. This did not eliminate partial observability for all of the 
games, but it was helpful in making many of them more Markovian. 

§ Reward function
§ The reward indicated how a game’s score changed from one time step to the 

next: +1 whenever it increased, 1 whenever it decreased, and 0 otherwise. 
This standardized the reward signal across the games.

§ Error clipping
§ The authors clipped the TD error in [-1,+1].
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DQN: Results
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Prioritised Experience Replay

§ Experience Replay does not consider the importance of an 
experience e* =< 𝑠* , 𝑎* , 𝑟*"#, 𝑠*"# > .

§ Idea: sample experiences based on a priority function.

§ Priority is proportional to TD error.

§ Priority function:

§ Parameter 𝛼 determines “how much” prioritisation is used.
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𝑝* = |𝑅*"# + 𝛾max$ 𝑄∼(𝑆*"#, 𝑎; 𝑤) − 𝑄(𝑆* , 𝐴*; 𝑤)|

𝑃 𝑗 =
𝑝*,

∑- 𝑝-$
𝛼 = 0?



Rainbow
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Drawbacks

§ Slow training

§ Hard to tune

§ Hard to implement / debug



MULTI-AGENT RL
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Multi-agent systems and RL

§ “A multiagent system deals with the construction of a system 
involving multiple autonomous and interacting agents, which are 
situated in a common environment that can perceive through 
sensors, and act upon it through actuators.” (Busoniu et al., 
2008)

§ “Multiagent systems often need to be very complex, and 
multiagent reinforcement learning is a promising candidate for 
dealing with this emerging complexity.” (Stone & Veloso 2000). 
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§ Space exploration

§ Hide-and-Seek
§ Agents discover progressively more complex

tool use while playing a simple game of hide-and-seek.

Multi-agent RL: Applications
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Video

https://openai.com/blog/emergent-tool-use/


§ Robotic soccer (Robocup)
§ “By the middle of the 21st century, a team of fully autonomous humanoid robot soccer 

players shall win a soccer game, complying with the official rules of FIFA, against the 
winner of the most recent World Cup.”

§ UAV-aided communication network

Multi-agent RL: Applications (2)
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Website

https://www.robocup.org/


Multi-agent RL: Applications (3)

§ Expert-level performance in Dota 2 (OpenAI)
§ It learned by playing over 10,000 years of games against itself.
§ OpenAI receives a $1B investment from Microsoft!
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§ Mastering StarCraft II (DeepMind)
§ “Despite the recent successes (Atari, Dota 2), AI 

techniques have struggled to cope with the 
complexity of StarCraft II. AlphaStar is the first AI 
to defeat a top professional player.” 



§ Curse of dimensionality
§ Table-based methods are also affected by this. In MARL cases, the 

problem is worse as the complexity is now exponential in the number of 
agents in the system.

§ Partial observability and Non-stationarity
§ Each agent cannot observe the entire environment, but has only 

knowledge about its local environment.
§ The effects of an agent’s action on the environment, also depend on the 

other agents’ actions. Therefore, the Markov property does not hold if an 
agent cannot observe the joint state / action.
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Multi-agent RL: Challenges

Function approximation, Agent organisation

Agent communication



Multi-agent RL: Challenges (2)

§ Multiagent credit assignment 
§ In a cooperative multiagent system an agent is, typically, provided 

with a reward at the global / system level. Given that other agents 
also interact with the environment, an agent may be rewarded for 
taking a bad action, or punished for taking a good action.
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Reward shaping



Multi-agent RL
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(Nowe, Vrancx, De Hauwere, 2012)



Independent Learners (ILs)

§ This involves the deployment of multiple agents each using a 
single-agent RL algorithm.

§ Each IL assumes any other agents to be a part of the 
environment and so, as the others simultaneously learn, the 
environment appears to be dynamic as the probability of transition 
when taking action a in state s changes over time.

§ If an IL 𝑖 uses SARSA, then its update rule is:
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𝑸𝒊 𝑶𝒕, 𝑨𝒕 = 𝑸𝒊 𝑶𝒕, 𝑨𝒕 + 𝜶[𝑹𝒕(𝟏 + 𝜸𝑸𝒊(𝑶𝒕(𝟏, 𝑨𝒕(𝟏) − 𝑸𝒊(𝑶𝒕, 𝑨𝒕)]



Joint Action Learners (JALs)

§ This approach considers the existence of other agents. Specifically, 
each agent observes the actions of the other agents, or each agent 
communicates its action to the others.

§ To overcome the appearance of a dynamic environment, JALs extend 
their value function to consider for each state the value of each 
possible combination of actions by all agents.

§ If a JAL 𝑖 uses SARSA, then its update rule is:
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𝑸𝒊 𝑶𝒕, 𝑨𝒕→ ← 𝑸𝒊 𝑶𝒕, 𝑨𝒕→ + 𝜶[𝑹𝒕(𝟏 +𝑸𝒊 𝑶𝒕(𝟏, 𝑨𝒕(𝟏→ −𝑸𝒊 𝑶𝒕, 𝑨𝒕→ ]



Agent communication
§ Communication is practised by many species in nature, and has also been 

demonstrated to be beneficial in multiagent systems.

§ Communication is considered to be the most common way of interaction 
between intelligent agents.

§ An agent communicates or shares its local information (observations, 
actions, rewards, or combination) with other agents in the system.

§ However, communication messages can be costly, noisy, corrupted, dropped 
or received out of order è communication should be minimal and simple.
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Agent organisation

§ The organisation of a multi-agent system is the collection of 
roles, relationships, and authority structures which govern its 
behavior.

§ Just as with human organisations, such agent organisations guide 
how the members of the population interact with one another.

§ The organisational design employed by a multi-agent system can 
have a significant effect on its performance.
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Agent organisation (cont’d)
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hierarchy
team

federation



IMITATION LEARNING

46



Imitation learning

§ Challenges
§ Determining an appropriate reward 

function.
§ Rewards can be sparse which makes the 

learning process.

§ Imitation learning
§ A reward function is not assumed to be 

known a priori, but rather it is assumed to 
be described implicitly through expert 
demonstrations.
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Video

https://www.youtube.com/watch?v=M-QUkgk3HyE&ab_channel=Stanford


Problem formulation

§ The primary difference in formulation from the previous RL problem is that 
we do not have access to the reward function.

§ Instead we have access to a set of expert demonstrations where each 
demonstration ξ consists of a sequence of state-control pairs:

𝝃 = { 𝒔𝟎, 𝒂𝟎 , 𝒔𝟏, 𝒂𝟏 , … }
which are drawn from the expert policy 𝜋∗.

§ The imitation learning problem is to leverage a set of demonstrations
𝚵 = {𝝃𝟏, 𝝃𝟐, … , 𝝃𝑫}

from an expert policy 𝜋∗ to find a policy M𝜋∗ that imitates the expert policy.
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Imitation learning methods

§ Directly imitate the expert’s policy 

§ Behaviour cloning

§ …

§ Indirectly imitate the expert’s policy by learning the 
expert’s reward function (Inverse RL) 

§ Apprenticeship learning

§ …
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Behaviour cloning
§ The difference between the learnt policy and expert demonstrations are 

minimized with respect to some metric through supervised learning techniques.

M𝜋 = argmin6 R
7∈9

R
:∈7

𝐿(𝜋(𝑠) − 𝜋∗(𝑠))
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§ It works well if the demonstrations are uniformly 
sampled across the entire state space.

§ A mistake made by the agent can easily put it 
into a state that the expert has never visited 
and the agent has never trained on.


