
funded by:

Machine Learning

Lecture 10

Christos Kyrkou
Research Lecturer
KIOS Research and Innovation Center of Excellence
University of Cyprus

MSc on Intelligent Critical Infrastructure Systems

2

Previously

▪ Unsupervised Learning

▪ No labels just the data

▪ Grouping-Clustering

▪ K-means

▪ Dimensionality reduction

▪ PCA

3

Deep Unsupervised Learning

▪ Nonlinear dimensional reduction and pattern matching.

▪ In many settings, have more unlabeled examples than labeled.

▪ Learn useful representations from unlabeled data.

▪ Better representation may improve prediction accuracy.

4

Latent variable models

▪ What is a latent variable?

▪ A variable that we cannot observe directly.

▪ True explanatory factors for the representation of the data

▪ Easier to process and is a compressed representation of the data.

▪ Can we learn the true explanatory factors, e.g., latent variables, from
only observed data?

5

Autoencoders

▪ Autoencoders are an unsupervised learning technique in which we

leverage neural networks for the task of representation learning.

▪ Specifically, we'll design a neural network architecture such that we

impose a bottleneck in the network which forces a compressed

knowledge representation of the original input.

▪ If some sort of structure exists in the data (i.e., correlations between

input features), this structure can be learned and consequently

leveraged when forcing the input through the network's bottleneck.

6

Autoencoders

▪ Autoencoders are designed to reproduce their input

▪ Key point is to reproduce the input

from a learned encoding.

▪ Feed forward network intended to

reproduce the input

https://www.edureka.co/blog/autoencoders-tutorial/

Latent

Space

Representation

7

Autoencoders

▪ A standard neural network architecture (linear layer followed by non-

linearity).

▪ In the simplest case:

▪ A linear layer with

activation: f = 𝜎(𝑊𝑥)

▪ Another linear layer

with activation : 𝑔 = 𝜎(𝑊′ℎ)

8

Autoencoders

▪ Activation depends on type of data

▪ (e.g., sigmoid for binary, linear for

real valued)

▪ Loss function needs to capture the task

▪ Using all linear layers with Euclidean

loss is equivalent to PCA

(under certain data normalization)

9

Autoencoders vs PCA

▪ PCA takes a collection of vectors and produces a usually smaller set of

vectors that can be used to approximate the input vectors via linear

combination.

▪ Very efficient for certain applications.

▪ No learning takes place

▪ No hyperparameter tuning

▪ PCA might be quicker and can be less expensive to compute than

autoencoders.

10

Autoencoders vs PCA

▪ An autoencoder can learn non-linear transformations with
a non-linear activation function and multiple layers.

▪ Can express nonlinear dependencies

▪ It is more efficient to learn several layers with an
autoencoder rather than learn one huge transformation
with PCA

▪ It has been observed that deep learning based

autoencoders summarise the information better as

compared to the linear PCA model

▪ It can make use of pre-trained layers from another model
to apply transfer learning to enhance the
encoder/decoder.

https://www.edureka.co/blog/autoencoders-tutorial/

11

Deep Autoencoders: structure

▪ Encoder:

▪ Compress input into a latent-space representation of usually smaller

dimension. ℎ = 𝑓(𝑥)

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

𝒓𝒙

𝒉

Latent

Representation

12

Deep Autoencoders: structure

▪ Code (i.e., also known as Bottleneck):

▪ The layer between the encoder and decoder

▪ This part of the network represents the compressed input ℎ which is fed to

the decoder.
𝒓𝒙

𝒉

Latent

Representation

▪ Need a well-designed approach to decide
which aspects of observed data are
relevant information and what aspects
can be discarded by balancing two
criteria:
▪ Compactness of representation, measured

as the compressibility.

▪ It retains some behaviourally relevant
variables from the input.

13

Deep Autoencoders: Hidden Layer

Dimensionality

▪ Smaller than the input

▪ Will compress the data, reconstruction of the data far from the training

distribution will be difficult.

▪ Larger than the input

▪ No compression needed

▪ Can trivially learn to just copy, no structure is learned (unless you

regularize)

▪ Does not encourage learning of meaningful features (unless you

regularize)

14

Bottleneck layer (undercomplete)

▪ Suppose input images are 𝑛𝑥𝑛 and the latent space is 𝑚 < 𝑛𝑥𝑛.

▪ Then the latent space is not sufficient to reproduce all images.

▪ Needs to learn an encoding that captures the important features in

training data, sufficient for approximate reconstruction.

15

Autoencoders: structure

▪ Decoder:

▪ Reconstruct input from the latent space. 𝑟 = 𝑔(𝑓(𝑥)) with 𝑟 as close

to 𝑥 as possible

▪ The decoded data is a lossy

reconstruction of the

original data and it is reconstructed

from the latent space representation.

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

𝒓𝒙

𝒉

Latent

Representation

16

Properties of Autoencoders

▪ Data-specific: Autoencoders are only able to compress data similar to

what they have been trained on.

▪ Lossy: The decompressed outputs will be degraded compared to the
original inputs.

▪ Learned automatically from examples: It is easy to train specialized
instances of the algorithm that will perform well on a specific type of

input.

▪ It doesn’t have to use dense layers.

▪ It can use convolutional layers to learn which is better for video, image
and series data.

https://www.edureka.co/blog/autoencoders-tutorial/

17

Convolution Autoencoders

▪ Autoencoders in their traditional formulation does not take into

account the fact that a signal can be seen as a sum of other signals.

▪ Convolutional Autoencoders use the convolution operator to exploit

this observation.

▪ They learn to encode the input in a set of simple signals and then try

to reconstruct the input from them.

▪ Appropriate operations can be formed

to upscale a tensor to higher

resolution.

18

Design choices for Autoencoders

▪ Number of layers:

▪ The autoencoder can consist of as many layers as we want.

▪ Number of nodes/filters per layer:

▪ The number of nodes per layer decreases with each subsequent layer of the encoder,
and increases back in the decoder. The decoder is usually symmetric to the encoder in
terms of the layer structure.

▪ Loss function:

▪ We either use mean squared error or binary cross-entropy. If the input values are in
the range [0, 1] then we typically use binary cross-entropy, otherwise, we use the
mean squared error.

▪ Code size:

▪ It represents the number of nodes in the middle layer. Smaller size results in more
compression.

19

Autoencoders: applications

▪ An interesting practical application is dimensionality reduction for

data visualization

▪ After training we retain only the encoder

▪ Encoder learns mapping from the data 𝑥, to a low-dimensional latent
space 𝑧 which can be visualized

20

Autoencoders: applications

▪ Autoencoders are used for converting any black and white picture into

a colored image.

▪ Depending on what is in the picture, it is possible to tell what the color

should be.

https://www.edureka.co/blog/autoencoders-tutorial/

21

Autoencoders: applications

▪ Compression

▪ The reconstructed image is the same as our input but with reduced

dimensions. It helps in providing the similar image with a reduced pixel

value.

22

Autoencoders: applications

▪ Watermark removal

▪ It is also used for removing watermarks from images or to remove any

object while filming a video or a movie.

https://www.edureka.co/blog/autoencoders-tutorial/

23

Stacked (deep) Autoencoders

▪ What can we do with them?

▪ Good for compression (better than

PCA)

▪ Disregard the decoder and use the

middle layer as a representation

▪ Fine-tune the autoencoder for the

task

24

Capacity

▪ As with other NNs, overfitting is a problem when capacity is too large

for the data.

▪ Autoencoders address this through some combination of:

▪ Bottleneck layer – fewer degrees of freedom than in possible outputs.

▪ Training to denoise.

▪ Sparsity through regularization.

▪ Contractive penalty.

25

Denoising autoencoders

▪ Idea: add noise to input (input clean image + noise) but learn to

reconstruct the original clean image

▪ Leads to better representations

▪ Prevents copying

▪ Kaggle has a dataset on damaged documents.

https://blog.keras.io/building-autoencoders-in-keras.html

https://www.kaggle.com/c/denoising-dirty-documents

26

Denoising autoencoders

▪ Basic autoencoder trains to minimize the loss between 𝑥 and the reconstruction 𝑔(𝑓(𝑥)).

▪ Denoising autoencoders train to minimize the loss between 𝑥 and 𝑔(𝑓(𝑥 + 𝑢)), where 𝑢 is
random noise.

▪ Same possible architectures, different training data.

▪ Note: different noise is added during each epoch

https://www.edureka.co/blog/autoencoders-tutorial/

𝑥 + 𝑢
𝑓(𝑥 + 𝑢)

𝑔(𝑓(𝑥 + 𝑢))

27

Denoising autoencoders

▪ Denoising autoencoders can’t simply memorize the input output

relationship.

▪ Intuitively, a denoising autoencoder learns a projection from a

neighborhood of our training data back onto the training data.

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf

28

Sparse Autoencoders

▪ Sparse autoencoders offer us an alternative method for introducing an
information bottleneck without requiring a reduction in the number of
nodes at our hidden layers.

▪ Construct a loss function to penalize activations within a layer.

▪ Usually regularize the weights of a network, not the activations.

▪ Individual nodes of a trained model that activate are data-dependent.

▪ Different inputs will result in activations of different nodes through the
network.

▪ For any given observation, we'll encourage our network to learn an
encoding and decoding which only relies on activating a small number of
neurons.

https://www.jeremyjordan.me/autoencoders/

29

Sparse Autoencoders

▪ There are two main ways by which we can impose this sparsity

constraint:

▪ L1 Regularization: Penalize the absolute value of the vector of

activations a in layer h for observation I

▪ KL divergence: Use cross-entropy between average

activation and desired activation

https://www.jeremyjordan.me/autoencoders/

30

Contractive Autoencoders

▪ For very similar inputs, the learned encoding should also be very

similar.

▪ i.e., for small changes to the input, we should still maintain a very similar

encoded state

▪ Can explicitly train for this by requiring that the derivative of the hidden

layer activations are small with respect to the input variations.

31

Contractive Autoencoders

▪ Because we're explicitly encouraging our model to learn an encoding

in which similar inputs have similar encodings, we're essentially

forcing the model to learn how to contract a neighbourhood of inputs

into a smaller neighborhood of outputs.

▪ Notice how the slope (i.e., derivative) of the reconstructed data is

essentially zero for local neighbourhoods of input data.

32

Contractive Autoencoders

▪ This is accomplished by adding a regularizer, or penalty term, to whatever cost or

objective function the algorithm is trying to minimize.

▪ Regularization loss term as the squared Frobenius norm ∥ 𝐴 ∥𝐹 of the Jacobian

matrix 𝐽 for the hidden layer activations with respect to the input observations.

▪ A Frobenius norm is essentially an 𝐿2 norm for a matrix and the Jacobian matrix simply

represents all first-order partial derivatives of a vector-valued function.

▪ where ∇𝑥𝑎𝑖
ℎ

𝑥 defines the gradient field of the hidden layer

activations with respect to the input 𝑥, summed over all 𝑖 training

samples

https://www.jeremyjordan.me/autoencoders/

𝐿 𝑥, ො𝑥 + 𝜆

𝑖

∇𝑥𝑎𝑖
ℎ

𝑥
2

33

Autoencoders

▪ Denoising autoencoders make

the reconstruction function (ie.

decoder) resist small but finite-

sized perturbations of the input

▪ Contractive autoencoders make

the feature extraction function

(ie. encoder) resist infinitesimal

perturbations of the input.

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf

34

Autoencoders

▪ Both the denoising and contractive autoencoder can perform well

▪ Outperform regular autoencoder in terms of quality of features they

extract

▪ Advantage of denoising autoencoder : simpler to implement

▪ requires adding one or two lines of code to regular autoencoder

▪ no need to compute Jacobian of hidden layer

▪ Advantage of contractive autoencoder : gradient is deterministic

▪ No sampling of noise involved

▪ can use second order optimizers (conjugate gradient, LBFGS, etc.)

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf

35

Autoencoder Tasks

▪ Dimensionality Reduction

▪ For example, a 2006 study resulted in better results than PCA, with the

representation easier to interpret and the categories manifested as well-

separated clusters

▪ Anomaly Detection

▪ If the input and reconstruction do not match this might signal an

anomaly (out of distribution/corrupted input).

▪ Feature Learning

▪ Good features can be obtained in the hidden layer

36

Autoencoder Tasks

▪ Using autoencoders to initialize weights for supervised learning

▪ Effective pretraining of weights should act as a regularizer

▪ Limits the region of weight space that will be explored by supervised

learning

▪ Can add any additional auxiliary tasks

37

Autoencoder Problem

▪ The latent space of an autoencoder can be extremely irregular

▪ Close codes in latent space can give very different decoded data

▪ Some point of the latent space can give meaningless content once

decoded

Close points do not

correspond to meaningful

reconstructions

Close codes correspond

to very different data

points

Similar points have codes

that are close

38

Variational Autoencoder (VAE)

▪ Key idea: make the process probabilistic.

▪ i.e., the latent variables, 𝑧 define a probability distribution depending on

the input 𝑋

▪ The encoder takes input and returns parameters for a probability

density: i.e., 𝑞𝜃(𝑧|𝑥) gives the mean and co-variance matrix.

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

39

VAE Encoder

▪ Implemented via a neural network: each input 𝑥 gives a vector mean

and diagonal covariance matrix that determine the Gaussian density

▪ Parameters 𝜃 for the NN need to be learned – need to set up a loss

function.

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

40

VAE Decoder

▪ The decoder takes latent variable 𝑧 and returns parameters for a

distribution.

▪ A point from the latent space is sampled from that distribution

▪ Reconstruction 𝑥 from the code is produced via neural network, the

NN parameters 𝜙 are learned.

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

41

VAE Loss

▪ Loss function for autoencoder: 𝐿2distance between output and input

(or clean input for denoising case)

▪ For a single input, 𝑥𝑖, we maximize the expected value of returning 𝑥𝑖
or minimize the expected negative log likelihood.

−Ε𝑧~𝑞𝜃(𝑧|𝑥𝑖) [log 𝑝𝜙(𝑥𝑖|𝑧)]

Reconstruction Loss

▪ BinaryCrossEntropy(𝑥𝑖,𝑥𝑖)

▪ This can also be expressed us 𝑥𝑖 − 𝑝𝜙 𝑥𝑖 𝑧
2

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

42

VAE Loss (2)

▪ But the fact that VAEs encode inputs as distributions instead of simple

points is not sufficient to ensure continuity and completeness.

▪ Problem: the weights may adjust to memorize input images via 𝑧.

i.e., input that we regard as similar may end up very different in 𝑧

space. Network can “cheat” by learning narrow distributions.

▪ Solution: Try to force 𝑞Θ 𝑧 𝑥𝑖 to be close to a standard normal (or

some other simple density).

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

43

VAE Loss (3)

▪ KL-Divergence Regularizer

▪ Inferred latent distribution: 𝑝Θ(𝑧|𝑥)

▪ Fixed prior on latent distribution: 𝑝(𝑧)

▪ 𝑑𝐾𝐿(𝑝Θ(𝑧|𝑥)||𝑝(𝑧))=σ𝑥∈𝑋 𝑝Θ(𝑧|𝑥)log(
𝑝Θ(𝑧|𝑥)

𝑝(𝑧)
)

▪ Common choice of prior: Gaussian 𝑁(𝜇, 𝜎)

▪ Encourages encodings to be distributed evenly around the center of the latent space

▪ Penalize the network when it tries to “cheat” by clustering points in specific regions (i.e.,
memorizing the data)

▪ KLD Regularizer for Gaussian case: p z = 𝑁(𝜇 = 0, 𝜎 = 1) and 𝑝Θ(𝑧|𝑥)~𝑁(𝜇 𝜃 , 𝜎(𝜃))

−
1

2

𝑗=1

𝐽

𝜎𝑗 𝜃
2 + 𝜇𝑗 𝜃

2 − 1 − log 𝜎𝑗 𝜃

Kullback-Leibler (KL) Divergence: is a measure of how one probability distribution is different from a second, reference probability distribution.

44

VAE Loss (4)

▪ For a single data point 𝑥𝑖 we get the loss function

𝐿𝑖 𝜃, 𝜙 = −Ε𝑧~𝑞𝜃 𝑧 𝑥𝑖 log 𝑝𝜙 𝑥𝑖 𝑧 + 𝝀𝑑𝐾𝐿(𝑝Θ(𝑧|𝑥𝑖)||𝑝(𝑧))

▪ The first term promotes recovery of the input.

▪ The second term keeps the encoding continuous – the encoding is

compared to a fixed 𝑝(𝑧) regardless of the input, which inhibits

memorization.

▪ The hyperparameter 𝜆 controls how much emphasis is given on the

reconstruction vs the regularization term

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

45

VAE training

▪ Problem: The expectation would usually be approximated by

choosing samples and averaging.

▪ This is not differentiable wrt 𝜃 and 𝜙.

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb

46

VAE training (2)

▪ Reparameterization: If 𝑧 is 𝑁(𝜇 𝑥𝑖 , σ
2 𝑥𝑖), then we can sample z

using 𝑧 = 𝜇 𝑥𝑖 + σ 𝑥𝑖 × 𝜖, where 𝜖 is 𝑁(0, 𝚰).

▪ So, we can draw samples from 𝑁(0, 𝚰), which doesn’t depend on the

parameters.

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb

47

VAE generative model

▪ After training, 𝑞𝜃 𝑧|𝑥𝑖 is close to a standard normal, N(0,1) – easy to

sample.

▪ Using a sample of 𝑧 from 𝑞𝜃 𝑧|𝑥𝑖 as input to sample from 𝑝𝜑 𝑥|𝑧

gives an approximate reconstruction of xi, at least in expectation.

▪ If we sample any 𝑧 from 𝑁(0, 𝐼) and use it as input to to sample from

𝑝𝜑 𝑥|𝑧 then we can approximate the entire data distribution 𝑝(𝑥).

i.e., we can generate new samples that look like the input but aren’t in
the input.

▪ We can sample from this distribution to get random values of the
lower-dimensional representation 𝑧.

48

Random Samples From Generative VAE

▪ https://www.whichfaceisreal.com/

Face images generated with a Variational Autoencoder
(source: Wojciech Mormul on Github).

https://github.com/WojciechMormul/vae

49

Supervised vs Unsupervised Learning

▪ Supervised learning – learning with labeled data

▪ Approach: collect a large dataset, manually label the data, train a model, deploy

▪ It is the dominant form of ML at present

▪ Learned feature representations on large datasets are often transferred via pre-
trained models to smaller domain-specific datasets

▪ Unsupervised learning – learning with unlabeled data

▪ Approach: discover patterns in data either via clustering similar instances, or density
estimation, or dimensionality reduction …

▪ Self-supervised learning – representation learning with unlabeled data

▪ Learn useful feature representations from unlabeled data through pretext tasks

▪ The term “self-supervised” refers to creating its own supervision (i.e., without
supervision, without labels)

▪ Self-supervised learning is one category of unsupervised learning

50

Self-Supervised Learning

▪ Why self-supervised learning?

▪ Creating labeled datasets for each task is an expensive, time-consuming, tedious task

▪ Requires hiring human labelers, preparing labeling manuals, creating GUIs, creating storage
pipelines, etc.

▪ High quality annotations in certain domains can be particularly expensive (e.g., medicine)

▪ Self-supervised learning takes advantage of the vast amount of unlabeled data on the internet
(images, videos, text)

▪ Rich discriminative features can be obtained by training models without actual labels

▪ Self-supervised learning can potentially generalize better because we learn more about the
world

▪ Challenges for self-supervised learning

▪ How to select a suitable pretext task for an application

▪ There is no gold standard for comparison of learned feature representations

▪ Selecting a suitable loss functions, since there is no single objective as the test set accuracy in
supervised learning

51

Self-Supervised Learning

▪ Self-supervised learning versus unsupervised learning

▪ Self-supervised learning (SSL)
▪ Aims to extract useful feature representations from raw unlabeled data through pretext tasks

▪ Apply the feature representation to improve the performance of downstream tasks

▪ Unsupervised learning
▪ Discover patterns in unlabeled data, e.g., for clustering or dimensionality reduction

▪ Note also that the term “self-supervised learning” is sometimes used interchangeably with “unsupervised
learning”

▪ Self-supervised learning versus transfer learning

▪ Transfer learning is often implemented in a supervised manner
▪ E.g., learn features from a labeled ImageNet, and transfer the features to a smaller dataset

▪ SSL is a type of transfer learning approach implemented in an unsupervised manner

▪ Self-supervised learning versus data augmentation

▪ Data augmentation is often used as a regularization method in supervised learning

▪ In SSL, image rotation of shifting are used for feature learning in raw unlabeled data

52

Supervision comes from the data

53

Self-Supervised Learning

▪ One more depiction of the general pipeline for self-supervised learning

is shown in the figure

▪ For the downstream task, re-use the trained ConvNet base model, and

fine-tune the top layers on a small labeled dataset

Picture from: Jing and Tian (2019) Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey

54

Self-Supervised Learning

▪ Self-supervised learning example

▪ Pretext task: train a model to predict the rotation degree of rotated images with cats and dogs

(we can collect million of images from internet, labeling is not required)

▪ Downstream task: use transfer learning and fine-tune the learned model from the pretext task

for classification of cats vs dogs with very few labeled examples

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

55

Context Encoders

▪ Predict missing pieces, also known as context encoders, or inpainting

▪ Pathak (2016) Context Encoders: Feature Learning by Inpainting

▪ Training data: remove a random region in images

▪ Pretext task: fill in a missing piece in the image

▪ The model needs to understand the content of the entire image, and produce a plausible

replacement for the missing piece

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1604.07379

56

Context Encoders

▪ The initially considered model uses an encoder-decoder architecture

▪ The encoder and decoder have multiple Conv layers, and a shared

central fully-connected layer

▪ The output of the decoder is the reconstructed input image

▪ A Euclidean ℓ2 distance is used as the reconstruction loss function ℒrec

57

Summary

▪ An autoencoder is a neural network architecture capable of discovering structure
within data in order to develop a compressed representation of the input.

▪ Many different variants of the general autoencoder architecture exist with the
goal of ensuring that the compressed representation represents meaningful
attributes of the original data input.

▪ Autoencoders can be modified to be generative (VAE) and create completely new
data points.

▪ The biggest challenge when working with autoencoders is getting the model to
actually learn a meaningful and generalizable latent space representation.

▪ Self-supervised learning

▪ A label is constructed from only input signals without human-annotation

▪ Predict (well-designed) alternative tasks to what we actually want to do

	Slide 1: Machine Learning Lecture 10
	Slide 2: Previously
	Slide 3: Deep Unsupervised Learning
	Slide 4: Latent variable models
	Slide 5: Autoencoders
	Slide 6: Autoencoders
	Slide 7: Autoencoders
	Slide 8: Autoencoders
	Slide 9: Autoencoders vs PCA
	Slide 10: Autoencoders vs PCA
	Slide 11: Deep Autoencoders: structure
	Slide 12: Deep Autoencoders: structure
	Slide 13: Deep Autoencoders: Hidden Layer Dimensionality
	Slide 14: Bottleneck layer (undercomplete)
	Slide 15: Autoencoders: structure
	Slide 16: Properties of Autoencoders
	Slide 17: Convolution Autoencoders
	Slide 18: Design choices for Autoencoders
	Slide 19: Autoencoders: applications
	Slide 20: Autoencoders: applications
	Slide 21: Autoencoders: applications
	Slide 22: Autoencoders: applications
	Slide 23: Stacked (deep) Autoencoders
	Slide 24: Capacity
	Slide 25: Denoising autoencoders
	Slide 26: Denoising autoencoders
	Slide 27: Denoising autoencoders
	Slide 28: Sparse Autoencoders
	Slide 29: Sparse Autoencoders
	Slide 30: Contractive Autoencoders
	Slide 31: Contractive Autoencoders
	Slide 32: Contractive Autoencoders
	Slide 33: Autoencoders
	Slide 34: Autoencoders
	Slide 35: Autoencoder Tasks
	Slide 36: Autoencoder Tasks
	Slide 37: Autoencoder Problem
	Slide 38: Variational Autoencoder (VAE)
	Slide 39: VAE Encoder
	Slide 40: VAE Decoder
	Slide 41: VAE Loss
	Slide 42: VAE Loss (2)
	Slide 43: VAE Loss (3)
	Slide 44: VAE Loss (4)
	Slide 45: VAE training
	Slide 46: VAE training (2)
	Slide 47: VAE generative model
	Slide 48: Random Samples From Generative VAE
	Slide 49: Supervised vs Unsupervised Learning
	Slide 50: Self-Supervised Learning
	Slide 51: Self-Supervised Learning
	Slide 52: Supervision comes from the data
	Slide 53: Self-Supervised Learning
	Slide 54: Self-Supervised Learning
	Slide 55: Context Encoders
	Slide 56: Context Encoders
	Slide 57: Summary

