
funded by:

Machine Learning

Lecture 10

Christos Kyrkou
Research Lecturer
KIOS Research and Innovation Center of Excellence
University of Cyprus

MSc on Intelligent Critical Infrastructure Systems



2

Previously

▪ Unsupervised Learning

▪ No labels just the data

▪ Grouping-Clustering

▪ K-means

▪ Dimensionality reduction

▪ PCA
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Deep Unsupervised Learning

▪ Nonlinear dimensional reduction and pattern matching.

▪ In many settings, have more unlabeled examples than labeled.

▪ Learn useful representations from unlabeled data.

▪ Better representation may improve prediction accuracy.
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Latent variable models

▪ What is a latent variable?

▪ A variable that we cannot observe directly.

▪ True explanatory factors for the representation of the data

▪ Easier to process and is a compressed representation of the data. 

▪ Can we learn the true explanatory factors, e.g., latent variables, from 
only observed data?
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Autoencoders

▪ Autoencoders are an unsupervised learning technique in which we 

leverage neural networks for the task of representation learning.

▪ Specifically, we'll design a neural network architecture such that we 

impose a bottleneck in the network which forces a compressed 

knowledge representation of the original input.

▪ If some sort of structure exists in the data (i.e., correlations between 

input features), this structure can be learned and consequently 

leveraged when forcing the input through the network's bottleneck.
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Autoencoders

▪ Autoencoders are designed to reproduce their input

▪ Key point is to reproduce the input 

from a learned encoding.  

▪ Feed forward network intended to 

reproduce the input

https://www.edureka.co/blog/autoencoders-tutorial/

Latent 

Space 

Representation
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Autoencoders

▪ A standard neural network architecture (linear layer followed by non-

linearity).

▪ In the simplest case:

▪ A linear layer with 

activation: f = 𝜎(𝑊𝑥)

▪ Another linear layer 

with activation : 𝑔 = 𝜎(𝑊′ℎ)
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Autoencoders

▪ Activation depends on type of data

▪ (e.g., sigmoid for binary, linear for 

real valued)

▪ Loss function needs to capture the task

▪ Using all linear layers with Euclidean 

loss is equivalent to PCA 

(under certain data normalization)
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Autoencoders vs PCA

▪ PCA takes a collection of vectors and produces a usually smaller set of 

vectors that can be used to approximate the input vectors via linear 

combination.  

▪ Very efficient for certain applications.

▪ No learning takes place

▪ No hyperparameter tuning

▪ PCA might be quicker and can be less expensive to compute than 

autoencoders.
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Autoencoders vs PCA

▪ An autoencoder can learn non-linear transformations with 
a non-linear activation function and multiple layers.

▪ Can express nonlinear dependencies

▪ It is more efficient to learn several layers with an 
autoencoder rather than learn one huge transformation 
with PCA

▪ It has been observed that deep learning based 

autoencoders summarise the information better as 

compared to the linear PCA model

▪ It can make use of pre-trained layers from another model 
to apply transfer learning to enhance the 
encoder/decoder.

https://www.edureka.co/blog/autoencoders-tutorial/
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Deep Autoencoders: structure

▪ Encoder:  

▪ Compress input into a latent-space representation of usually smaller 

dimension.  ℎ = 𝑓(𝑥)

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

𝒓𝒙

𝒉

Latent

Representation
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Deep Autoencoders: structure

▪ Code (i.e., also known as Bottleneck):

▪ The layer between the encoder and decoder

▪ This part of the network represents the compressed input ℎ which is fed to 

the decoder.
𝒓𝒙

𝒉

Latent

Representation

▪ Need a well-designed approach to decide 
which aspects of observed data are 
relevant information and what aspects 
can be discarded by balancing two 
criteria:
▪ Compactness of representation, measured 

as the compressibility.

▪ It retains some behaviourally relevant 
variables from the input. 
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Deep Autoencoders: Hidden Layer 

Dimensionality

▪ Smaller than the input

▪ Will compress the data, reconstruction of the data far from the training 

distribution will be difficult.

▪ Larger than the input

▪ No compression needed

▪ Can trivially learn to just copy, no structure is learned (unless you 

regularize)

▪ Does not encourage learning of meaningful features (unless you 

regularize)
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Bottleneck layer (undercomplete)

▪ Suppose input images are 𝑛𝑥𝑛 and the latent space is 𝑚 < 𝑛𝑥𝑛.  

▪ Then the latent space is not sufficient to reproduce all images.  

▪ Needs to learn an encoding that captures the important features in 

training data, sufficient for approximate reconstruction.  
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Autoencoders: structure

▪ Decoder: 

▪ Reconstruct input from the latent space.   𝑟 = 𝑔(𝑓(𝑥)) with 𝑟 as close 

to 𝑥 as possible

▪ The decoded data is a lossy 

reconstruction of the 

original data and it is reconstructed 

from the latent space representation.

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

𝒓𝒙

𝒉

Latent

Representation
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Properties of Autoencoders

▪ Data-specific: Autoencoders are only able to compress data similar to 

what they have been trained on.

▪ Lossy: The decompressed outputs will be degraded compared to the 
original inputs.

▪ Learned automatically from examples: It is easy to train specialized 
instances of the algorithm that will perform well on a specific type of 

input.

▪ It doesn’t have to use dense layers. 

▪ It can use convolutional layers to learn which is better for video, image 
and series data.

https://www.edureka.co/blog/autoencoders-tutorial/
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Convolution Autoencoders

▪ Autoencoders in their traditional formulation does not take into 

account the fact that a signal can be seen as a sum of other signals. 

▪ Convolutional Autoencoders use the convolution operator to exploit 

this observation. 

▪ They learn to encode the input in a set of simple signals and then try 

to reconstruct the input from them.

▪ Appropriate operations can be formed 

to upscale a tensor to higher 

resolution.
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Design choices for Autoencoders

▪ Number of layers: 

▪ The autoencoder can consist of as many layers as we want.

▪ Number of nodes/filters per layer: 

▪ The number of nodes per layer decreases with each subsequent layer of the encoder, 
and increases back in the decoder. The decoder is usually symmetric to the encoder in 
terms of the layer structure.

▪ Loss function: 

▪ We either use mean squared error or binary cross-entropy. If the input values are in 
the range [0, 1] then we typically use binary cross-entropy, otherwise, we use the 
mean squared error.

▪ Code size: 

▪ It represents the number of nodes in the middle layer. Smaller size results in more 
compression.
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Autoencoders: applications

▪ An interesting practical application is dimensionality reduction for 

data visualization

▪ After training we retain only the encoder

▪ Encoder learns mapping from the data 𝑥, to a low-dimensional latent 
space 𝑧 which can be visualized
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Autoencoders: applications

▪ Autoencoders are used for converting any black and white picture into 

a colored image. 

▪ Depending on what is in the picture, it is possible to tell what the color

should be.

https://www.edureka.co/blog/autoencoders-tutorial/
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Autoencoders: applications

▪ Compression

▪ The reconstructed image is the same as our input but with reduced 

dimensions. It helps in providing the similar image with a reduced pixel 

value.
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Autoencoders: applications

▪ Watermark removal

▪ It is also used for removing watermarks from images or to remove any 

object while filming a video or a movie.

https://www.edureka.co/blog/autoencoders-tutorial/
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Stacked (deep) Autoencoders

▪ What can we do with them?

▪ Good for compression (better than 

PCA)

▪ Disregard the decoder and use the 

middle layer as a representation

▪ Fine-tune the autoencoder for the 

task



24

Capacity

▪ As with other NNs, overfitting is a problem when capacity is too large 

for the data. 

▪ Autoencoders address this through some combination of:

▪ Bottleneck layer – fewer degrees of freedom than in possible outputs.  

▪ Training to denoise.

▪ Sparsity through regularization.

▪ Contractive penalty. 
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Denoising autoencoders

▪ Idea: add noise to input (input clean image + noise ) but learn to 

reconstruct the original clean image

▪ Leads to better representations

▪ Prevents copying

▪ Kaggle has a dataset on damaged documents.  

https://blog.keras.io/building-autoencoders-in-keras.html

https://www.kaggle.com/c/denoising-dirty-documents
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Denoising autoencoders

▪ Basic autoencoder trains to minimize the loss between 𝑥 and the reconstruction 𝑔(𝑓(𝑥)).

▪ Denoising autoencoders train to minimize the loss between 𝑥 and 𝑔(𝑓(𝑥 + 𝑢)), where 𝑢 is 
random noise.  

▪ Same possible architectures, different training data.  

▪ Note: different noise is added during each epoch

https://www.edureka.co/blog/autoencoders-tutorial/

𝑥 + 𝑢
𝑓(𝑥 + 𝑢)

𝑔(𝑓(𝑥 + 𝑢))
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Denoising autoencoders

▪ Denoising autoencoders can’t simply memorize the input output 

relationship.   

▪ Intuitively, a denoising autoencoder learns a projection from a 

neighborhood of our training data back onto the training data.   

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf
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Sparse Autoencoders

▪ Sparse autoencoders offer us an alternative method for introducing an 
information bottleneck without requiring a reduction in the number of 
nodes at our hidden layers. 

▪ Construct a loss function to penalize activations within a layer.

▪ Usually regularize the weights of a network, not the activations. 

▪ Individual nodes of a trained model that activate are data-dependent.

▪ Different inputs will result in activations of different nodes through the 
network.

▪ For any given observation, we'll encourage our network to learn an 
encoding and decoding which only relies on activating a small number of 
neurons.

https://www.jeremyjordan.me/autoencoders/
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Sparse Autoencoders

▪ There are two main ways by which we can impose this sparsity 

constraint:

▪ L1 Regularization: Penalize the absolute value of the vector of 

activations a in layer h for observation I

▪ KL divergence: Use cross-entropy between average 

activation and desired activation

https://www.jeremyjordan.me/autoencoders/
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Contractive Autoencoders

▪ For very similar inputs, the learned encoding should also be very 

similar.

▪ i.e., for small changes to the input, we should still maintain a very similar 

encoded state

▪ Can explicitly train for this by requiring that the derivative of the hidden 

layer activations are small with respect to the input variations.
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Contractive Autoencoders

▪ Because we're explicitly encouraging our model to learn an encoding 

in which similar inputs have similar encodings, we're essentially 

forcing the model to learn how to contract a neighbourhood of inputs 

into a smaller neighborhood of outputs.

▪ Notice how the slope (i.e., derivative) of the reconstructed data is 

essentially zero for local neighbourhoods of input data.
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Contractive Autoencoders

▪ This is accomplished by adding a regularizer, or penalty term, to whatever cost or 

objective function the algorithm is trying to minimize. 

▪ Regularization loss term as the squared Frobenius norm ∥ 𝐴 ∥𝐹 of the Jacobian 

matrix 𝐽 for the hidden layer activations with respect to the input observations.

▪ A Frobenius norm is essentially an 𝐿2 norm for a matrix and the Jacobian matrix simply 

represents all first-order partial derivatives of a vector-valued function.

▪ where ∇𝑥𝑎𝑖
ℎ

𝑥 defines the gradient field of the hidden layer 

activations with respect to the input 𝑥, summed over all 𝑖 training 

samples

https://www.jeremyjordan.me/autoencoders/

𝐿 𝑥, ො𝑥 + 𝜆

𝑖

∇𝑥𝑎𝑖
ℎ

𝑥
2
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Autoencoders

▪ Denoising autoencoders make 

the reconstruction function (ie. 

decoder) resist small but finite-

sized perturbations of the input

▪ Contractive autoencoders make 

the feature extraction function 

(ie. encoder) resist infinitesimal 

perturbations of the input.

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf
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Autoencoders

▪ Both the denoising and contractive autoencoder can perform well

▪ Outperform regular autoencoder in terms of quality of features they 

extract

▪ Advantage of denoising autoencoder : simpler to implement

▪ requires adding one or two lines of code to regular autoencoder

▪ no need to compute Jacobian of hidden layer

▪ Advantage of contractive autoencoder : gradient is deterministic 

▪ No sampling of noise involved

▪ can use second order optimizers (conjugate gradient, LBFGS, etc.) 

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf
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Autoencoder Tasks

▪ Dimensionality Reduction

▪ For example, a 2006 study resulted in better results than PCA, with the 

representation easier to interpret and the categories manifested as well-

separated clusters

▪ Anomaly Detection

▪ If the input and reconstruction do not match this might signal an 

anomaly (out of distribution/corrupted input).

▪ Feature Learning

▪ Good features can be obtained in the hidden layer
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Autoencoder Tasks

▪ Using autoencoders to initialize weights for supervised learning

▪ Effective pretraining of weights should act as a regularizer

▪ Limits the region of weight space that will be explored by supervised 

learning

▪ Can add any additional auxiliary tasks
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Autoencoder Problem

▪ The latent space of an autoencoder can be extremely irregular

▪ Close codes in latent space can give very different decoded data

▪ Some point of the latent space can give meaningless content once 

decoded

Close points do not 

correspond to meaningful 

reconstructions

Close codes correspond 

to very different data 

points

Similar points have codes 

that are close
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Variational Autoencoder (VAE)

▪ Key idea:  make the process probabilistic.

▪ i.e., the latent variables, 𝑧 define a probability distribution depending on 

the input 𝑋

▪ The encoder takes input and returns parameters for a probability 

density: i.e.,  𝑞𝜃(𝑧|𝑥) gives the mean and co-variance matrix.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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VAE Encoder

▪ Implemented via a neural network:  each input 𝑥 gives a vector mean 

and diagonal covariance matrix that determine the Gaussian density

▪ Parameters 𝜃 for the NN need to be learned – need to set up a loss 

function.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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VAE Decoder

▪ The decoder takes latent variable 𝑧 and returns parameters for a 

distribution.  

▪ A point from the latent space is sampled from that distribution

▪ Reconstruction 𝑥 from the code is produced via neural network, the 

NN parameters 𝜙 are learned.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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VAE Loss

▪ Loss function for autoencoder:  𝐿2distance between output and input 

(or clean input for denoising case)

▪ For a single input, 𝑥𝑖, we maximize the expected value of returning 𝑥𝑖
or minimize the expected negative log likelihood.

−Ε𝑧~𝑞𝜃(𝑧|𝑥𝑖) [log 𝑝𝜙(𝑥𝑖|𝑧)]

Reconstruction Loss

▪ BinaryCrossEntropy(𝑥𝑖,𝑥𝑖)

▪ This can also be expressed us 𝑥𝑖 − 𝑝𝜙 𝑥𝑖 𝑧
2

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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VAE Loss (2)

▪ But the fact that VAEs encode inputs as distributions instead of simple 

points is not sufficient to ensure continuity and completeness. 

▪ Problem:  the weights may adjust to memorize input images via 𝑧.  

i.e., input that we regard as similar may end up very different in 𝑧

space. Network can “cheat” by learning narrow distributions.

▪ Solution:  Try to force 𝑞Θ 𝑧 𝑥𝑖 to be close to a standard normal (or 

some other simple density). 

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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VAE Loss (3)

▪ KL-Divergence Regularizer

▪ Inferred latent distribution: 𝑝Θ(𝑧|𝑥)

▪ Fixed prior on latent distribution: 𝑝(𝑧)

▪ 𝑑𝐾𝐿(𝑝Θ(𝑧|𝑥)||𝑝(𝑧))=σ𝑥∈𝑋 𝑝Θ(𝑧|𝑥)log(
𝑝Θ(𝑧|𝑥)

𝑝(𝑧)
)

▪ Common choice of prior: Gaussian 𝑁(𝜇, 𝜎)

▪ Encourages encodings to be distributed evenly around the center of the latent space

▪ Penalize the network when it tries to “cheat” by clustering points in specific regions (i.e., 
memorizing the data)

▪ KLD Regularizer for Gaussian case: p z = 𝑁(𝜇 = 0, 𝜎 = 1) and 𝑝Θ(𝑧|𝑥)~𝑁(𝜇 𝜃 , 𝜎(𝜃))

−
1

2


𝑗=1

𝐽

𝜎𝑗 𝜃
2 + 𝜇𝑗 𝜃

2 − 1 − log 𝜎𝑗 𝜃

Kullback-Leibler (KL) Divergence: is a measure of how one probability distribution is different from a second, reference probability distribution.
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VAE Loss (4)

▪ For a single data point 𝑥𝑖 we get the loss function

𝐿𝑖 𝜃, 𝜙 = −Ε𝑧~𝑞𝜃 𝑧 𝑥𝑖 log 𝑝𝜙 𝑥𝑖 𝑧 + 𝝀𝑑𝐾𝐿(𝑝Θ(𝑧|𝑥𝑖)||𝑝(𝑧))

▪ The first term promotes recovery of the input.

▪ The second term keeps the encoding continuous – the encoding is 

compared to a fixed 𝑝(𝑧) regardless of the input, which inhibits 

memorization.  

▪ The hyperparameter 𝜆 controls how much emphasis is given on the 

reconstruction vs the regularization term

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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VAE training

▪ Problem:  The expectation would usually be approximated by 

choosing samples and averaging.  

▪ This is not differentiable wrt 𝜃 and 𝜙.  

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb
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VAE training (2)

▪ Reparameterization:  If 𝑧 is 𝑁(𝜇 𝑥𝑖 , σ
2 𝑥𝑖 ), then we can sample z 

using 𝑧 = 𝜇 𝑥𝑖 + σ 𝑥𝑖 × 𝜖, where 𝜖 is 𝑁(0, 𝚰).  

▪ So, we can draw samples from 𝑁(0, 𝚰), which doesn’t depend on the 

parameters.   

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb
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VAE generative model

▪ After training, 𝑞𝜃 𝑧|𝑥𝑖 is close to a standard normal, N(0,1) – easy to 

sample.  

▪ Using a sample of 𝑧 from 𝑞𝜃 𝑧|𝑥𝑖 as input to sample from 𝑝𝜑 𝑥|𝑧

gives an approximate reconstruction of xi, at least in expectation.  

▪ If we sample any 𝑧 from 𝑁(0, 𝐼) and use it as input to to sample from 

𝑝𝜑 𝑥|𝑧 then we can approximate the entire data distribution 𝑝(𝑥).   

i.e., we can generate new samples that look like the input but aren’t in 
the input.  

▪ We can sample from this distribution to get random values of the 
lower-dimensional representation 𝑧.
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Random Samples From Generative VAE

▪ https://www.whichfaceisreal.com/

Face images generated with a Variational Autoencoder 
(source: Wojciech Mormul on Github).

https://github.com/WojciechMormul/vae
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Supervised vs Unsupervised Learning

▪ Supervised learning – learning with labeled data

▪ Approach: collect a large dataset, manually label the data, train a model, deploy

▪ It is the dominant form of ML at present

▪ Learned feature representations on large datasets are often transferred via pre-
trained models to smaller domain-specific datasets 

▪ Unsupervised learning – learning with unlabeled data

▪ Approach: discover patterns in data either via clustering similar instances, or density 
estimation, or dimensionality reduction …  

▪ Self-supervised learning – representation learning with unlabeled data

▪ Learn useful feature representations from unlabeled data through pretext tasks

▪ The term “self-supervised” refers to creating its own supervision (i.e., without 
supervision, without labels)

▪ Self-supervised learning is one category of unsupervised learning
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Self-Supervised Learning

▪ Why self-supervised learning?

▪ Creating labeled datasets for each task is an expensive, time-consuming, tedious task

▪ Requires hiring human labelers, preparing labeling manuals, creating GUIs, creating storage 
pipelines, etc.

▪ High quality annotations in certain domains can be particularly expensive (e.g., medicine)

▪ Self-supervised learning takes advantage of the vast amount of unlabeled data on the internet 
(images, videos, text)

▪ Rich discriminative features can be obtained by training models without actual labels

▪ Self-supervised learning can potentially generalize better because we learn more about the 
world

▪ Challenges for self-supervised learning

▪ How to select a suitable pretext task for an application 

▪ There is no gold standard for comparison of learned feature representations

▪ Selecting a suitable loss functions, since there is no single objective as the test set accuracy in 
supervised learning
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Self-Supervised Learning

▪ Self-supervised learning versus unsupervised learning 

▪ Self-supervised learning (SSL)
▪ Aims to extract useful feature representations from raw unlabeled data through pretext tasks

▪ Apply the feature representation to improve the performance of downstream tasks

▪ Unsupervised learning
▪ Discover patterns in unlabeled data, e.g., for clustering or dimensionality reduction

▪ Note also that the term “self-supervised learning” is sometimes used interchangeably with “unsupervised 
learning”

▪ Self-supervised learning versus transfer learning 

▪ Transfer learning is often implemented in a supervised manner
▪ E.g., learn features from a labeled ImageNet, and transfer the features to a smaller dataset

▪ SSL is a type of transfer learning approach implemented in an unsupervised manner

▪ Self-supervised learning versus data augmentation

▪ Data augmentation is often used as a regularization method in supervised learning

▪ In SSL, image rotation of shifting are used for feature learning in raw unlabeled data 
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Supervision comes from the data
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Self-Supervised Learning

▪ One more depiction of the general pipeline for self-supervised learning 

is shown in the figure

▪ For the downstream task, re-use the trained ConvNet base model, and 

fine-tune the top layers on a small labeled dataset

Picture from: Jing and Tian (2019) Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey
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Self-Supervised Learning

▪ Self-supervised learning example

▪ Pretext task: train a model to predict the rotation degree of rotated images with cats and dogs 

(we can collect million of images from internet, labeling is not required)

▪ Downstream task: use transfer learning and fine-tune the learned model from the pretext task 

for classification of cats vs dogs with very few labeled examples

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Context Encoders

▪ Predict missing pieces, also known as context encoders, or inpainting

▪ Pathak (2016) Context Encoders: Feature Learning by Inpainting

▪ Training data: remove a random region in images

▪ Pretext task: fill in a missing piece in the image

▪ The model needs to understand the content of the entire image, and produce a plausible 

replacement for the missing piece

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1604.07379
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Context Encoders

▪ The initially considered model uses an encoder-decoder architecture 

▪ The encoder and decoder have multiple Conv layers, and a shared 

central fully-connected layer

▪ The output of the decoder is the reconstructed input image

▪ A Euclidean ℓ2 distance is used as the reconstruction loss function ℒrec
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Summary

▪ An autoencoder is a neural network architecture capable of discovering structure 
within data in order to develop a compressed representation of the input. 

▪ Many different variants of the general autoencoder architecture exist with the 
goal of ensuring that the compressed representation represents meaningful 
attributes of the original data input.

▪ Autoencoders can be modified to be generative (VAE) and create completely new 
data points.

▪ The biggest challenge when working with autoencoders is getting the model to 
actually learn a meaningful and generalizable latent space representation.

▪ Self-supervised learning

▪ A label is constructed from only input signals without human-annotation

▪ Predict (well-designed) alternative tasks to what we actually want to do
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