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Course outline

= Week 1 = Week 5
= [ntroduction and Preliminaries = Unsupervised Learning

= Week 2 = Week 6
» Linear Regression » Reinforcement Learning
= Regularisation, Logistic Regression, SVMs = Week?7

= Week3 = Monitoring and Control
= Neural Networks and Deep Learning

= Week 4

» Feature Engineering and Evaluation
*= Online Learning
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Application to Monitoring and Control — Outline *\;\(\ i

* [ntroduction to Monitoring and Control

= Mathematical Modelling of Dynamical Systems

= Adaptation and Learning in Control Systems

= System Identification (Continuous-time & Discrete-time)

= |earning Control using Neural Networks

—> CONCLUDING REMARKS FOR THE CLASS
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Nonlinear Identification (Learning)

x() = ¢ (x(0),u(t),) + f (x(2),u(?),1)
Y(#) = 6 (x(2),u(t),t) + h(x(t), u(?),t)

Problem: design an
identification model
that allows estimation
of the unknown f and h.

x(t): State variable =8
u(t): Control input

E, £ Known parts

f, h: Unknown parts

u(t)

Y

Nonlinear y(t)

System

Identification

N

Y

Model
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Start with a first-order linear example \FQE~§
X(t) = —ax(?) +bu(?) a, b : unknown [Plant] -

fc(t) =—a x(t)+ (am — &(1)) x(t) + l;(t)u(t) a >0 [Estimation Scheme]

&(t) — —j/lg(f)X(t) _ “(t) >  Plant 49 >
A [Adaptive Laws] N
b(1) = y,(t)u(?) =0
;;I Identification i
e(t)=x(t)—x(t) [Estimation Error] Model £(t)

Design Parameters: a,, >0, 7, >0, y,>0, x(0)
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Nonlinear Systems with Unknown Parameters

5%

x(t) =—ax(t)+cf (x(¢))+bg(u(t)) a, b,c :unknown
f(),g(+): known

(1) = —a,x(t)+(a, — a(t)) x() + &) f (x(t)) + b(¢)g(u(t))  Estimation Scheme

£(t) =——| (@, —a(0)) x()) + () £ (x(0)) + b)) g (1) |

s+a,

Adaptive Laws
a(t) = —y,&(t)x(t)
b(t) = 7,6()g(u(t))
&(1) = 56(1) [ (x(1)
e

(t)=x(t)—x(t)  [Estimation Error]
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Nonlinear Systems with Unknown Functions

1) = S0, u(0)) + [/ ((0),u(1) Plant

known unknown

§(t) = —a, 7(1) + E(x(0),u(t) + a,x(0) + [ (x(t),u(0);0()) ~ Estimation Scheme

#(0) = —— [ £+ a,x(0) + T (x(O.u(0):00) |
st+a_

Adaptive Laws 5 _ @i (x,u,é’)

A 00

0=T7Z¢ £=x—F

I'>0  (positive definite)
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Continuous-Time Learning Using Neural Networks

C x(0) = f(x()+u(r) [ :unknown )
#(6) =—a () +a x(O)+ F(x@:00) +ut) a >0

00 =TZ(@) &) )

A. Radial Basis Function (RBF) Networks

N A A . N .
f(x;@l,ﬁz,...HN) zzeie—(x—ci) /o
i=l

Zl_ _ (’3]? _ e—(x—ci)z/a2
20
0=y (x=%)
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Continuous-Time Learning Using Neural Networks

Implementation using RBF Networks

ﬁ:f(x)+u x(O)sz

N
A A A —()C—Cl-)z/()'2 £ . ~0
X=-a,x+a, x+ E (Q.e +u x(0)=x
i=1

— 7/ie_(x—ci)2/02 (X—)%) él(()) _ éio

>

Design parameters to choose:

Qaga)/eoa}/iﬂciﬂéio i:1929'°°N /
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Continuous-Time Learning Using Neural Networks

B. Sigmoidal Neural Networks (SNN)




Continuous-Time Learning Using Neural Networks

Implementation of SNN

Design parameters to choose:

Qﬂ,)ﬁo,yi,éio i=1,2,...3M
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Discrete-time Learning in dynamical systems

{y(kﬂ):f(y(k), y(k—l),...y(k—ny,u(k),...u(k—nu)}

kel k=0,1,2,......
fR" xR 5 R

f 1s unknown (or partially unknown)

Let z(k)=| y(k), y(k=1),... y(k—n,,u(k),...u(k —n, |
:>[y(k +1) = f(z(k)) ] (z(k) 1s measurable)
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Discrete-Time Learning

-
y(k+1)= f(z(k))
y(k+1)= f (z(k); 0(k)) Prediction/Identification Model
\§
Adaptive Laws:
a, >0 Step size
[ O(k +1) = O(k) + a,e(k+1)E(k) ] O0<y,<2 Learning rate
,5’0 > () Small design constant
Ok +1) = Bk + LD g of A " tivi

Uy
O
%
Y,

| Normalized Gradient Descent e(k) = y(k)— y(k) Estimation error




Discrete-Time Learning

Example: y(k+1) = f(y(k), y(k—=1),u(k))

u(k) Dynamical System y(k+1)
1 v+ = FOrte), yk-1), u(k)) !
VY ek +1)
1 _—
y(k) i ‘ -
1 /
s S D J D y(k _1)> Adap.tfve _
Appréximator y(k+1)
O uk) | 7
= 700
- 7
’ ’
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Discrete-Time Learning

Example: y(k+1)=f(y(k), y(k 1), u(k))
Given 1(0), y(=1), 8(0), u(0)
\begin {for} £=0,1,2,......N

1. z(k)=[y(k), y(k—1),u(k)]

2. E(k) = %(z(k), é(k))

3. y(k+1)= f(z(k))

4. P(k+1) = f(z(k),0(k))

7o (y(k+1) = Pk +1))
B, +|E)|

5. O(k+1)=0(k)+ E(k)
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\end {for}
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From Learning to Fault Diagnosis i

= A similar estimation scheme can also be used for fault diagnosis

= Additionally, in fault diagnosis we require upper bounds (or statistical
information) on the uncertainty so that we can distinguish between faults

and modelling uncertainties

= Based on the modelling uncertainty bounds, we can compute adaptive

threshold signals

= Finally, we also need to design a decision logic algorithm for fault

detection and isolation
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Learning Control Using Neural Networks \ﬁ

/J AN

x(2): State variable

x(2) =S(x(),u(t),t)+ f(x(¢),u(t),t) u(t): Control input
y(8) = ¢ (x(2),u(?),t) + h(x(2),u(?),?) E, . Known parts

f, h: Unknown parts

Problem: design a controller:

u=pu(y,0,t)
0=Au,y,0,t)

s
O Such that y(t) follows a desired trajectory y (t) as closely as possible.
e
[
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Start with a simple case: linear adaptive conirol

v(t) = ay(t)+ bu(t) a, b: unknown; sign(b) is known

Model Reference Adaptive Control (MRAC) Problem:

Choose an appropriate control law u(t) such that all signals in the closed loop plant are
bounded and the plant output y(t) tracks the output y, (t) of the reference model:

Vu()=-a,y, ) +b,r(1)

where r(t) is a bounded, piecewise continuous signal, referred to as the reference or
command input.

b

r(t) ; +’"a >,,(1)

A4

(1)

u(t)

S

> y(t)

t
|
Q

@
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Start with a simple case: linear adaptive conirol

How would we solve the MRAC problem if we knew a, b?

u=—k y@)+1r()

g . a +a . b h Assuming that b is not equal to O
= k =-—*4 [ =" (plant is controllable)
b b
- J
V() _ YulS)

= |y(t)—», (1) > 0 (exponentially fast for all r(t))
r(s)  r(s)
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Direct Adaptive Control (Direct MRAC)

y(t) = ay(1) + bu(t)
Vu)==a,y,(t)+b,r()
u(t) = —k()y(2) + L(t)r(2)
e(t) = y(t) -y,

y(t) = (a—bk()y(t) +bl(t)r(z)
Vu)=~a,y, () +b,r(t)
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k(t) = 7,&(t)y(t) sgn(b)
[(£) = —7,&()r(t) sgn(b)

r(t)

S 1(¢)

Y

s+a,

S

J/ >, (2)

—> &(1)

> y(t)




Indirect Adaptive Control (Indirect MRAC)

If a, b were known, then we would use: PR +da

U= —k*y(t) + l*r(t) b

Replace the unknown a, b by their estimates a(?), l;(t)
where they are generated by identification techniques:

. a +a(t) b h
u(t) =— ’"I;(t) (1) + I;(”;) r(?) (IAC)
u(t) = —k(t)y(t) +1{t)r(t) (DAC)

\ J

Need to make sure that: b(f) =0 (otherwise u(f) —> )
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Indirect Adaptive Control (Indirect MRAC)

Identification Model (Estimation Scheme):
§(0)=~a, (1) +(a, +aO)y(0) +b(O)u()

Identification Error: &(t)=y()—y(t)

Adaptive Laws:

a(1) = 7,&,(0)y(t)

b(t) = y,£,(Du(t)
\_ J
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Indirect Adaptive Control (Indirect MRAC)

How do we guarantee that: Z;(t) =0

Instead of: I;(t) =7,&(Hu(t)

Use: . A
se: y.&.()u(t) ifhsh
b(t) =1 7, (Du(r) if b=b and y,cu >0
. 0 ifb=b and 7,64 <0

This will guarantee that I;(t) >p and alsou e L_

Need to assume that we know the sign of b and also that we
know a lower bound on b.
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. S =
{ y=fy)+u ]

x|
Nonlinear Systems (with unknown functions) \ﬁ , \(\\

Objective: Choose an appropriate control law u(t) such that all the
signals in the closed-loop plant are bounded and the plant output y(t)
tracks the output vy, (t) of the reference model

VYV, =—Q, ¥, +b, 1

for all r(t) that are bounded and piecewise continuous.
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Nonlinear Systems (with unknown functions)

If we knew f(y) then what would we do?
u=—f(y)—a,y+b,r
y=1rW-=1W)=a,y+b,r
y=-a,y+b,r

Yy ==, V,, +b, 1
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lim || y(£) = y,, ()] =0 Exponentially fast
[—>0



Learning Control with Neural Networks (indirect approach)

[uz—f(y,é)—amerbmr]

Identification Model (Estimation Scheme):

y:_amj}_l_amy_l_f(yae)_'_u

,_9.0)




Reference Model

b,, .
s+a, ‘ > Vm
E
2 +
Controller Plant
o U | N4
u=—f(,0)-a,y+b,r y=f()+u >
_|_
A A (C;
f(yﬁ)T TJ’ _ !
Identification N j}
s Model
9 —
) f(y,0)
A4




Learning Control with Neural Networks (indirect approach)

I=IO S @O any by KO)=,

u

ym =y b ym(o):ym;

N

0= 50-9) 6(0)=6°

00 ——
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Discrete-time Learning Control N a@é
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[ y(k+1) = f(y(k), yk =1), ... y(k —n, )+ u(k) ]

Objective: Choose an appropriate control law u(k) such that all the signals
In the closed-loop plant are bounded and the plant output y(k) tracks the
output y (k) of the reference model y,,(k+1)=-a,y, (k)+b,r(k)

for all r(k) that are bounded.

f 1s unknown (or partially unknown)
Let z(k)=| y(k), y(k=D),... y(k=n,) |

= y(k+1)= f(z(k))+u(k) (z(k) 1s measurable)
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Discrete-Time Learning Control aﬂg

"k +1) = £(z(k)) + u(k) A
y(k+1)= f(Z(k); é(k)) +u(k) <€—— Prediction/Identification Model
ulk) = - f(z(k);6(k))—a_y (k)+b r(k) e Learning Control Law

Adaptive Laws:

a, >0 Step size
[ O(k +1) = O(k) + a,e(k+1)E(k) ] O0<y,<2 Learning rate
,6’0 > () Small design constant
2 2 yoe(k +1) 7 o
O(k+1)=6(k)+ = ¢ (k) of A Network sensitivity
2 { t Po+ |‘§(k)| J c(k) = @é’ (Z(k)’ H(k)) function

K@1OG

| Normalized Gradient Descent e(k) = y(k)— y(k) Estimation error
e



Discrete-Time Learning Control

Example: y(k+1)= f(y(k), y(k —1)) +u(k) ==

Given  (0), y(-1), 6(0), y,,(0)
\begin {for} £=0,1,2,......N

1. z(k) = y(k), y(k -1)]
2. u(k)=—f(z(k),0(k))—a,y (k)+b r(k)
of A
. E(k) =L z(k), O(k
3. 5 =5 (200,0(0))
4. ylk+1) = f(z(k)) +u(k)
5. y(k+l)=-a,y (k)+b r(k)
6. P(k+1)= f(z(k),0(k))
Vo (y(k+1) = p(k +1))

7. Ok +1)=0(k)+ '
By +|E(0)

5 (k)

K@1OC

\end {for}



Some Bibliography on Monitoring and Control
Using Learning Methods

= J.A. Farrell and M.M. Polycarpou, “Adaptive Approximation
Based Control’, J. Wiley, 2006.

= M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant Control. Springer-Verlag, 2016.
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Some Final Conclusions

» We have learned a lot
» A lot that we have not learned!
» The importance of gaining intuition

» Never |lose the big picture and the applications
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