

MSc on Intelligent Critical Infrastructure Systems

Machine Learning

Lecture 13: Monitoring and Control (Part II)

Marios Polycarpou

Director, KIOS Research and Innovation Center of Excellence

Professor, Electrical and Computer Engineering

University of Cyprus

University

of Cyprus

Imperial College

London

funded by:

Week 1

- Introduction and Preliminaries
- Week 2
 - Linear Regression
 - Regularisation, Logistic Regression, SVMs
- Week 3
 - Neural Networks and Deep Learning
- Week 4

§
[00]

- Feature Engineering and Evaluation
- Online Learning

- Week 5
 - Unsupervised Learning
- Week 6
 - Reinforcement Learning
- Week 7
 - Monitoring and Control

Application to Monitoring and Control – Outline

- Introduction to Monitoring and Control
- Mathematical Modelling of Dynamical Systems
- Adaptation and Learning in Control Systems
- System Identification (Continuous-time & Discrete-time)
- Learning Control using Neural Networks

→ CONCLUDING REMARKS FOR THE CLASS

Nonlinear Identification (Learning)

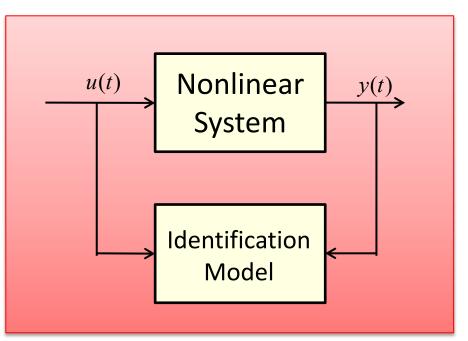
$$\dot{x}(t) = \xi(x(t), u(t), t) + f(x(t), u(t), t)$$

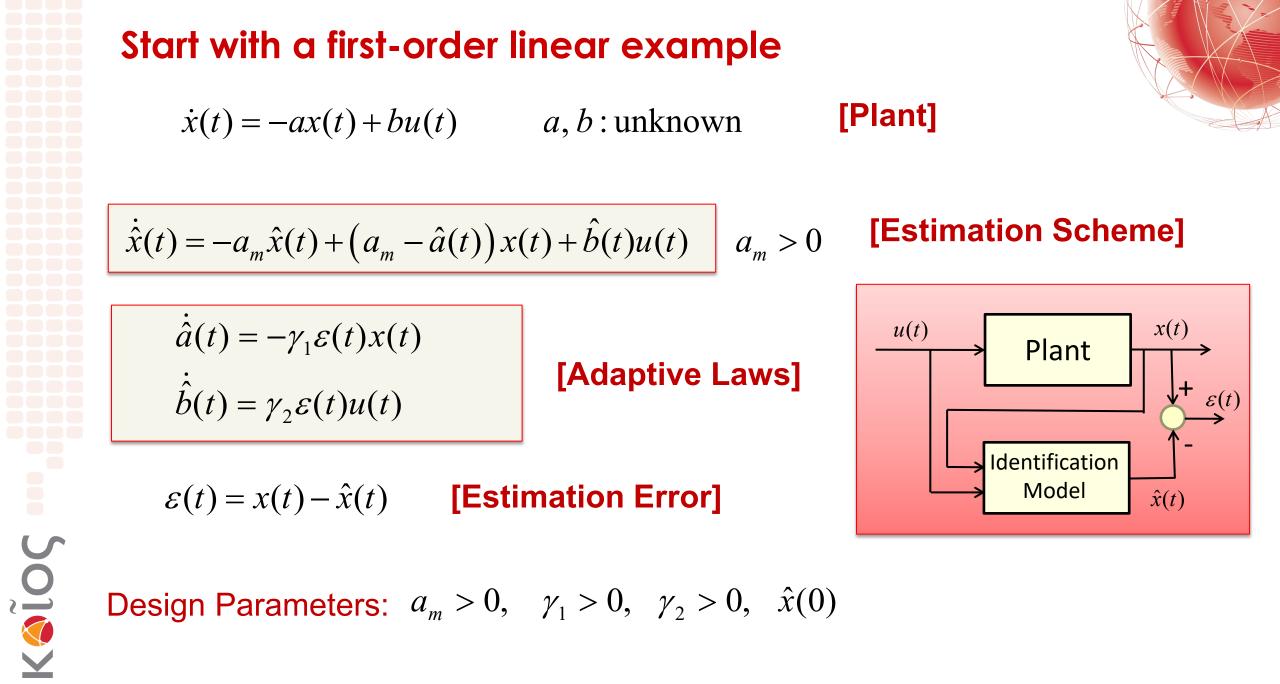
$$y(t) = \zeta(x(t), u(t), t) + h(x(t), u(t), t)$$

$$x(t)$$
: State variable

- u(t): Control input
- ξ, ζ : Known parts
- f, h: Unknown parts

<u>Problem:</u> design an identification model that allows estimation of the unknown f and h.





Design Parameters: $a_m > 0$, $\gamma_1 > 0$, $\gamma_2 > 0$, $\hat{x}(0)$

Nonlinear Systems with Unknown Parameters

 $\dot{x}(t) = -ax(t) + cf(x(t)) + bg(u(t))$ a, b, c : unknown $f(\bullet), g(\bullet)$: known

$$\dot{\hat{x}}(t) = -a_m \hat{x}(t) + (a_m - \hat{a}(t)) x(t) + \hat{c}(t) f(x(t)) + \hat{b}(t) g(u(t))$$
 Estimation Scheme
$$\hat{x}(t) = \frac{1}{s + a_m} \Big[(a_m - \hat{a}(t)) x(t) + \hat{c}(t) f(x(t)) + \hat{b}(t) g(u(t)) \Big]$$

Adaptive Laws

1

K S ÍOS

 $\dot{\hat{a}}(t) = -\gamma_1 \varepsilon(t) x(t)$ $\dot{\hat{b}}(t) = \gamma_2 \varepsilon(t) g(u(t))$ $\dot{\hat{c}}(t) = \gamma_3 \varepsilon(t) f(x(t))$

$$\varepsilon(t) = x(t) - \hat{x}(t)$$
 [Estimation Error]

Nonlinear Systems with Unknown Functions

$$\dot{x}(t) = \underbrace{\xi(x(t), u(t))}_{\text{known}} + \underbrace{f(x(t), u(t))}_{\text{unknown}} \qquad \text{Plant}$$

$$\dot{\hat{x}}(t) = -a_m \hat{x}(t) + \xi(x(t), u(t)) + a_m x(t) + \hat{f}(x(t), u(t); \hat{\theta}(t)) \qquad \text{Estimation Scheme}$$

$$\hat{x}(t) = \frac{1}{s + a_m} \Big[\xi(x(t), u(t)) + a_m x(t) + \hat{f}(x(t), u(t); \hat{\theta}(t)) \Big]$$

Adaptive Laws

 $\dot{\hat{\theta}} = \Gamma Z^T \varepsilon$

Kôľog

$$Z = \frac{\partial \hat{f}}{\partial \hat{\theta}}(x, u, \hat{\theta})$$

$$\varepsilon = x - \hat{x}$$

$$\Gamma > 0 \qquad \text{(positive definite)}$$

$$\dot{x}(t) = f(x(t)) + u(t) \qquad f : \text{unknown}$$
$$\dot{\hat{x}}(t) = -a_m \hat{x}(t) + a_m x(t) + \hat{f}(x(t); \hat{\theta}(t)) + u(t) \qquad a_m > 0$$
$$\dot{\hat{\theta}}(t) = \Gamma Z(t)^T \varepsilon(t)$$

A. Radial Basis Function (RBF) Networks

$$\hat{f}(x;\hat{\theta}_{1},\hat{\theta}_{2},\ldots\hat{\theta}_{N}) = \sum_{i=1}^{N} \hat{\theta}_{i} e^{-(x-c_{i})^{2}/\sigma^{2}}$$
$$Z_{i} = \frac{\partial \hat{f}}{\partial \hat{\theta}_{i}} = e^{-(x-c_{i})^{2}/\sigma^{2}}$$
$$\dot{\hat{\theta}}_{i} = \gamma_{i} e^{-(x-c_{i})^{2}/\sigma^{2}} (x-\hat{x})$$

§
[0]

Implementation using RBF Networks

<@ĵoc</pre>

 a_m

 $x(0) = x^0$ $\hat{x}(0) = \hat{x}^0$ $\dot{x} = f(x) + u$ $\dot{\hat{x}} = -a_m \hat{x} + a_m x + \sum_{i=1}^N \left(\hat{\theta}_i e^{-(x-c_i)^2/\sigma^2}\right) + u$ $\hat{\theta}_i = \gamma_i e^{-(x-c_i)^2/\sigma^2} \left(x - \hat{x}\right)$ $\hat{\theta}_i(0) = \hat{\theta}_i^0$ Design parameters to choose:

$$, \sigma, \hat{x}^0, \gamma_i, c_i, \theta_i^0 \qquad \qquad i = 1, 2, \dots N$$

B. Sigmoidal Neural Networks (SNN)

$$\hat{f}(x;\hat{\theta}_{1},\hat{\theta}_{2},\ldots\hat{\theta}_{3M}) = \sum_{i=1}^{M} \hat{\theta}_{i} \sigma\left(\hat{\theta}_{i+M}x + \hat{\theta}_{i+2M}\right)$$
$$\sigma\left(p\right) = \frac{1}{1+e^{-p}} \implies \sigma\left(\alpha x + \beta\right) = \frac{1}{1+e^{-(\alpha x + \beta)}}$$

$$Z_{i} = \frac{\partial \hat{f}}{\partial \hat{\theta}_{i}}$$
$$\dot{\hat{\theta}}_{i} = \gamma_{i} Z_{i} \left(x - \hat{x} \right)$$

§
[0]

Implementation of SNN

$$\dot{x} = f(x) + u \qquad x(0) = x^{0}$$

$$\dot{\hat{x}} = -a_{m}\hat{x} + a_{m}x + \sum_{i=1}^{M}\hat{\theta}_{i}\sigma\left(\hat{\theta}_{i+M}x + \hat{\theta}_{i+2M}\right) + u \qquad \hat{x}(0) = \hat{x}^{0}$$

$$\dot{\hat{\theta}}_{i} = \gamma_{i}\frac{\partial\hat{f}}{\partial\hat{\theta}_{i}}(x - \hat{x}) \qquad \hat{\theta}_{i}(0) = \hat{\theta}_{i}^{0}$$

Design parameters to choose:

< Signal Contraction of the second s

 $a_m, \hat{x}^0, \gamma_i, \hat{\theta}_i^0 \qquad \qquad i = 1, 2, \dots 3M$

Discrete-time Learning in dynamical systems

$$y(k+1) = f(y(k), y(k-1), \dots, y(k-n_y, u(k), \dots, u(k-n_u)))$$

$$k \in \mathbb{Z}^{+} \qquad k = 0, 1, 2, \dots$$

$$f : \mathbb{R}^{n_{y}+1} \times \mathbb{R}^{n_{u}+1} \to \mathbb{R}$$

$$f \quad \text{is unknown (or partially unknown)}$$
Let
$$z(k) = \left[y(k), y(k-1), \dots y(k-n_{y}, u(k), \dots u(k-n_{u}) \right]$$

$$\Rightarrow y(k+1) = f(z(k)) \qquad (z(k) \text{ is measurable})$$

(<) [</pre>

Discrete-Time Learning

$$y(k+1) = f(z(k))$$

$$\hat{y}(k+1) = \hat{f}(z(k); \hat{\theta}(k))$$
Prediction/Identification Model
Adaptive Laws:

$$\hat{\theta}(k+1) = \hat{\theta}(k) + \alpha_0 e(k+1)\xi(k)$$

$$\alpha_0 > 0$$

$$\alpha_0 > 0$$

$$\beta(k+1) = \hat{\theta}(k) + \alpha_0 e(k+1)\xi(k)$$

$$\alpha_0 > 0$$

$$\beta(k+1) = \hat{\theta}(k) + \frac{\gamma_0 e(k+1)}{\beta_0 + |\xi(k)|^2}\xi(k)$$

$$\hat{\theta}(k+1) = \hat{\theta}(k) + \frac{\gamma_0 e(k+1)}{\beta_0 + |\xi(k)|^2}\xi(k)$$

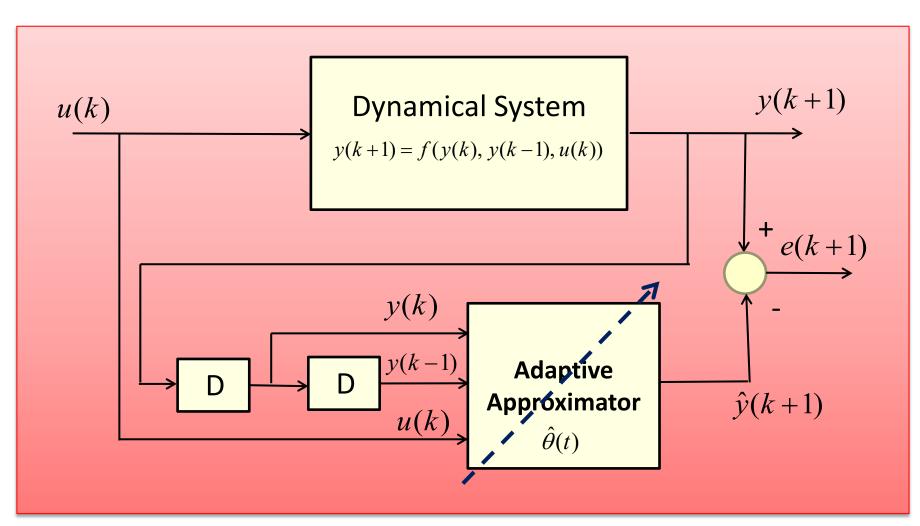
$$\hat{\xi}(k) = \frac{\partial \hat{f}}{\partial \hat{\theta}}(z(k), \hat{\theta}(k))$$
Normalized Gradient Descent
$$e(k) = y(k) - \hat{y}(k)$$
Estimation error

Kôľog

Discrete-Time Learning

Kôlog

Example: y(k+1) = f(y(k), y(k-1), u(k))



Discrete-Time Learning

Example: y(k+1) = f(y(k), y(k-1), u(k))Given $y(0), y(-1), \hat{\theta}(0), u(0)$ \begin {for} $k = 0, 1, 2, \dots N$ 1. z(k) = [y(k), y(k-1), u(k)]2. $\xi(k) = \frac{\partial \hat{f}}{\partial \hat{\theta}} (z(k), \hat{\theta}(k))$ 3. y(k+1) = f(z(k))4. $\hat{v}(k+1) = \hat{f}(z(k), \hat{\theta}(k))$ 5. $\hat{\theta}(k+1) = \hat{\theta}(k) + \frac{\gamma_0 \left(y(k+1) - \hat{y}(k+1) \right)}{\beta_0 + \left| \xi(k) \right|^2} \xi(k)$

 $end {for}$

From Learning to Fault Diagnosis

(@)[OC

- A similar estimation scheme can also be used for fault diagnosis
- Additionally, in fault diagnosis we require upper bounds (or statistical information) on the uncertainty so that we can distinguish between faults and modelling uncertainties
- Based on the modelling uncertainty bounds, we can compute adaptive threshold signals
- Finally, we also need to design a decision logic algorithm for fault detection and isolation

Learning Control Using Neural Networks

$$\dot{x}(t) = \xi(x(t), u(t), t) + f(x(t), u(t), t)$$

$$y(t) = \zeta(x(t), u(t), t) + h(x(t), u(t), t)$$

x(t): State variable

- u(t): Control input
- ξ, ζ : Known parts
- f, h: Unknown parts

Problem: design a controller:

(@)[OC

 $u = \mu(y, \theta, t)$ $\dot{\theta} = \lambda(u, y, \theta, t)$

Such that y(t) follows a desired trajectory $y_r(t)$ as closely as possible.

Start with a simple case: linear adaptive control

 $\dot{y}(t) = ay(t) + bu(t)$ a, b: unknown; sign(b) is known

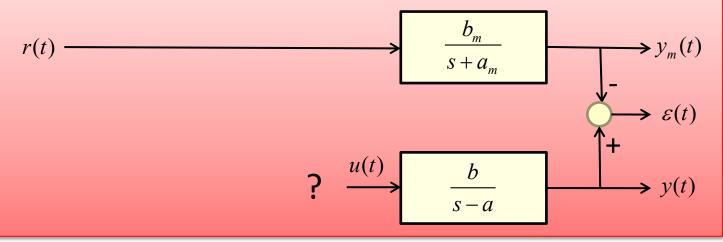
Model Reference Adaptive Control (MRAC) Problem:

§
[0]

Choose an appropriate control law u(t) such that all signals in the closed loop plant are bounded and the plant output y(t) tracks the output $y_m(t)$ of the reference model:

$$\dot{y}_m(t) = -a_m y_m(t) + b_m r(t)$$

where r(t) is a bounded, piecewise continuous signal, referred to as the reference or command input.



Start with a simple case: linear adaptive control

How would we solve the MRAC problem if we knew a, b?

 $u = -k^* y(t) + l^* r(t)$

$$\Rightarrow k^* = \frac{a_m + a}{b} \qquad l^* = \frac{b_m}{b}$$

Assuming that b is not equal to 0 (plant is controllable)

$$\frac{y(s)}{r(s)} = \frac{y_m(s)}{r(s)} \implies |y(t) - y_m(t)| \to 0 \text{ (exponentially fast for all r(t))}$$

Direct Adaptive Control (Direct MRAC)

$$\dot{y}(t) = ay(t) + bu(t)$$

$$\dot{y}_m(t) = -a_m y_m(t) + b_m r(t)$$

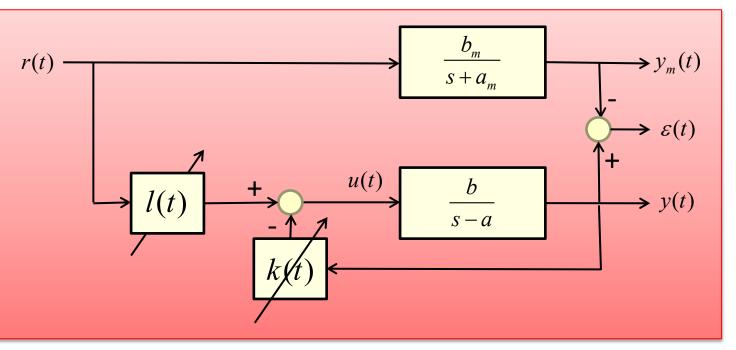
$$u(t) = -k(t)y(t) + l(t)r(t)$$

$$\varepsilon(t) = y(t) - y_m(t)$$

 $\dot{y}(t) = (a - bk(t))y(t) + bl(t)r(t)$ $\dot{y}_m(t) = -a_m y_m(t) + b_m r(t)$

KôĩoC

$$\dot{k}(t) = \gamma_1 \varepsilon(t) y(t) \operatorname{sgn}(b)$$
$$\dot{l}(t) = -\gamma_2 \varepsilon(t) r(t) \operatorname{sgn}(b)$$



20

Indirect Adaptive Control (Indirect MRAC)

If a, b were known, then we would use:

(@)[OC

$$u = -k^* y(t) + l^* r(t)$$

$$\begin{cases} k^* = \frac{a_m + a}{b} \\ l^* = \frac{b_m}{b} \end{cases}$$

Replace the unknown a, b by their estimates $\hat{a}(t), \hat{b}(t)$ where they are generated by identification techniques:

$$u(t) = -\frac{a_m + \hat{a}(t)}{\hat{b}(t)} y(t) + \frac{b_m}{\hat{b}(t)} r(t)$$
(IAC)
$$u(t) = -k(t)y(t) + l(t)r(t)$$
(DAC)

Need to make sure that: $\hat{b}(t) \neq 0$ (otherwise $u(t) \rightarrow \infty$)

Indirect Adaptive Control (Indirect MRAC)

Identification Model (Estimation Scheme):

 $\dot{\hat{y}}(t) = -a_m \hat{y}(t) + (a_m + \hat{a}(t))y(t) + \hat{b}(t)u(t)$

Identification Error:

$$\mathcal{E}_i(t) = y(t) - \hat{y}(t)$$

Adaptive Laws:

< S Í O C

$$\dot{\hat{a}}(t) = \gamma_1 \varepsilon_i(t) y(t)$$
$$\dot{\hat{b}}(t) = \gamma_2 \varepsilon_i(t) u(t)$$

Indirect Adaptive Control (Indirect MRAC)

How do we guarantee that: $\hat{b}(t) \neq 0$

Instead of:
$$\hat{b}(t) = \gamma_2 \varepsilon_i(t) u(t)$$

Use:

§
[0]

$$\dot{\hat{b}}(t) = \begin{cases} \gamma_2 \varepsilon_i(t) u(t) & \text{if } \hat{b} > \overline{b} \\ \gamma_2 \varepsilon_i(t) u(t) & \text{if } \hat{b} = \overline{b} \text{ and } \gamma_2 \varepsilon_i u > 0 \\ 0 & \text{if } \hat{b} = \overline{b} \text{ and } \gamma_2 \varepsilon_i u \le 0 \end{cases}$$

This will guarantee that
$$\hat{b}(t) \ge \overline{b}$$
 and also $u \in L_{\infty}$

Need to assume that we know the sign of b and also that we know a lower bound on b.

Nonlinear Systems (with unknown functions)

$$\dot{y} = f(y) + u$$

Objective: Choose an appropriate control law u(t) such that all the signals in the closed-loop plant are bounded and the plant output y(t) tracks the output $y_m(t)$ of the reference model

$$\dot{y}_m = -a_m y_m + b_m r$$

§
[0]

for all r(t) that are bounded and piecewise continuous.

Nonlinear Systems (with unknown functions)

If we knew f(y) then what would we do?

$$u = -f(y) - a_m y + b_m r$$

$$\dot{y} = f(y) - f(y) - a_m y + b_m r$$

$$\dot{y} = -a_m y + b_m r$$

$$\dot{y}_m = -a_m y_m + b_m r$$

$$\lim_{t \to \infty} \left\| y(t) - y_m(t) \right\| = 0$$

(@)[OC

Exponentially fast

Learning Control with Neural Networks (indirect approach)

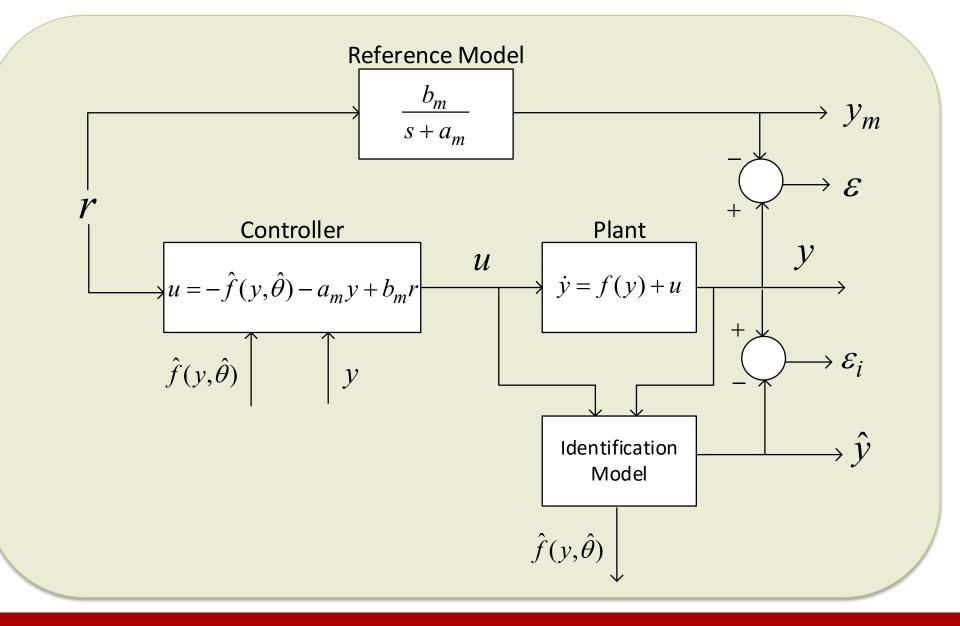
$$u = -\hat{f}(y,\hat{\theta}) - a_m y + b_m r$$

Identification Model (Estimation Scheme):

§
[0]

$$\begin{split} \dot{\hat{y}} &= -a_m \hat{y} + a_m y + \hat{f}(y, \hat{\theta}) + u \\ \dot{\hat{\theta}} &= \Gamma Z^\top e_i \\ & Z = \frac{\partial \hat{f}(\hat{y}, \hat{\theta})}{\partial \hat{\theta}} \end{split}$$

Learning Control with Neural Networks (indirect approach)



KôĩoC

Learning Control with Neural Networks (indirect approach)

€ Ú Ú Ú

$$\begin{split} \dot{y} &= f(y) \underbrace{-\hat{f}(y,\hat{\theta}) - a_m y + b_m r}_{u}, \quad y(0) = y_o \\ \dot{y} &= -a_m \hat{y} + a_m y + \hat{f}(y,\hat{\theta}) + u, \quad \hat{y}(0) = \hat{y}_o \\ \dot{y}_m &= -a_m y + b_m r, \quad y_m(0) = y_m^o \\ \dot{\theta} &= \Gamma \frac{\partial \hat{f}}{\partial \hat{\theta}} \underbrace{(y - \hat{y})}_{e_i}, \quad \hat{\theta}(0) = \hat{\theta}^o \end{split}$$

Discrete-time Learning Control

$$y(k+1) = f(y(k), y(k-1), \dots y(k-n_y) + u(k)$$

Objective: Choose an appropriate control law u(k) such that all the signals in the closed-loop plant are bounded and the plant output y(k) tracks the output $y_m(k)$ of the reference model $y_m(k+1) = -a_m y_m(k) + b_m r(k)$ for all r(k) that are bounded.

f is unknown (or partially unknown)

§
[0]

Let
$$z(k) = [y(k), y(k-1), \dots y(k-n_y)]$$

 $\Rightarrow y(k+1) = f(z(k)) + u(k)$ (z(k) is measurable)

Discrete-Time Learning Control

$$y(k+1) = f(z(k)) + u(k)$$

$$\hat{y}(k+1) = \hat{f}(z(k); \hat{\theta}(k)) + u(k) \quad \longleftarrow \quad \text{Prediction/Identification Model}$$

$$u(k) = -\hat{f}(z(k); \hat{\theta}(k)) - a_m y_m(k) + b_m r(k) \quad \longleftarrow \quad \text{Learning Control Law}$$

Adaptive Laws:

Kõlog

$$\hat{\theta}(k+1) = \hat{\theta}(k) + \alpha_0 e(k+1)\xi(k)$$

$$\hat{\theta}(k+1) = \hat{\theta}(k) + \frac{\gamma_0 e(k+1)}{\beta_0 + \left|\xi(k)\right|^2} \xi(k)$$

Normalized Gradient Descent

 $\begin{aligned} \alpha_0 &> 0 & \text{Step size} \\ 0 &< \gamma_0 &< 2 & \text{Learning rate} \\ \beta_0 &> 0 & \text{Small design constant} \\ \xi(k) &= \frac{\partial \hat{f}}{\partial \hat{\theta}} \Big(z(k), \hat{\theta}(k) \Big) \frac{\text{Network sensitivity}}{\text{function}} \\ e(k) &= y(k) - \hat{y}(k) & \text{Estimation error} \end{aligned}$

Discrete-Time Learning Control

Example: y(k+1) = f(y(k), y(k-1)) + u(k)

Given $y(0), y(-1), \hat{\theta}(0), y_m(0)$ \begin {for} $k = 0, 1, 2, \dots, N$ 1. z(k) = [y(k), y(k-1)]2. $u(k) = -\hat{f}(z(k), \hat{\theta}(k)) - a_m y_m(k) + b_m r(k)$ 3. $\xi(k) = \frac{\partial \hat{f}}{\partial \hat{\theta}} (z(k), \hat{\theta}(k))$ 4. y(k+1) = f(z(k)) + u(k)5. $y_m(k+1) = -a_m y_m(k) + b_m r(k)$ 6. $\hat{v}(k+1) = \hat{f}(z(k), \hat{\theta}(k))$ 7. $\hat{\theta}(k+1) = \hat{\theta}(k) + \frac{\gamma_0 \left(y(k+1) - \hat{y}(k+1)\right)}{\beta_0 + \left|\xi(k)\right|^2} \xi(k)$

 $\end {for}$

Kôĩog

Some Bibliography on Monitoring and Control Using Learning Methods

- J.A. Farrell and M.M. Polycarpou, "Adaptive Approximation Based Control", J. Wiley, 2006.
- M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
 Diagnosis and Fault-Tolerant Control. Springer-Verlag, 2016.

[
Solution]

Some Final Conclusions

- We have learned a lot
- > A lot that we have not learned!
- > The importance of gaining intuition
- Never lose the big picture and the applications