
ECE 805 – Machine Learning 

Tutorial 2, Monday, January 30, 2023 

1. In this method, we will minimize J by explicitly taking its derivatives with respect to the 
𝜃𝑗

′𝑠 and setting them to zero. Let’s introduce some notation for doing calculus with 

matrices. 

Training set: 𝑥 =  

[
 
 
 
 
(𝑥0)𝑇

(𝑥1)𝑇

(𝑥2)𝑇

⋮
(𝑥𝑁)𝑇]

 
 
 
 

 Target values: 𝑦 =  

[
 
 
 
 
𝑦0

𝑦1

𝑦2

⋮
𝑦𝑁]

 
 
 
 

 

We aim to minimize 𝐽 with respect to 𝜃, where 𝛩 =  

[
 
 
 
 
𝜃0

𝜃1

𝜃2

⋮
𝜃𝛮]

 
 
 
 

 and 

 𝐽(𝜃) =
1

2
∑ (𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

2𝑚
𝑖=0 .   (𝑌 = 𝑋𝛩) 

𝑆𝑖𝑛𝑐𝑒 𝑓𝜃(𝑥𝑖) = (𝑥𝑖)
𝑇
𝜃,we can easily verify that  

𝑓𝜃 − 𝑌 = 

[
 
 
 
 
 
𝑓𝜃(𝑥(0)) − 𝑦(0)

𝑓𝜃(𝑥(1)) − 𝑦(1)

𝑓𝜃(𝑥(2)) − 𝑦(2)

⋮
𝑓𝜃(𝑥(𝑁)) − 𝑦(𝑁)

]
 
 
 
 
 

=  

[
 
 
 
 
 
 (𝑥

(0))
𝑇
𝜃

(𝑥(1))
𝑇
𝜃

(𝑥(2))
𝑇
𝜃

⋮

(𝑥(𝛮))
𝑇
𝜃]
 
 
 
 
 
 

−

[
 
 
 
 
 
𝑦(0)

𝑦(1)

𝑦(2)

⋮
𝑦(𝛮)]

 
 
 
 
 

 

𝑈𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑧, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑡ℎ𝑎𝑡 𝑧𝑇𝑧 =  ∑𝑧𝑖
2

𝑖

∶ 

𝐽(𝜃) =
1

2
(𝑋𝛩 − 𝛶)𝑇(𝛸𝛩 − 𝛶) =

1

2
∑(𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

2
𝑚

𝑖=0

 

𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽, 𝑙𝑒𝑡𝑠 𝑓𝑖𝑛𝑑 𝑖𝑡𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜃.    
𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡   ∇𝐴𝑇  𝑡𝑟 𝐴𝐵𝐴𝑇𝐶 = 𝐵𝑇𝐴𝑇𝐶𝑇 + 𝐵𝐴𝑇𝐶 
𝐻𝑒𝑛𝑐𝑒,  

∇𝜃𝐽(𝜃) =  ∇𝜃

1

2
(𝑋𝛩 − 𝑌)𝑇(𝛸𝛩 − 𝑌) =

1

2
∇𝜃(𝛩𝛵𝛸𝛵𝛸𝛩 − 𝛩𝛵𝛸𝛵𝛶 − 𝛶𝛵𝛸𝛩 + 𝛶𝛵𝛶)

=
1

2
∇𝜃𝑡𝑟(𝛩𝛵𝛸𝛵𝛸𝛩 − 𝛩𝛵𝛸𝛵𝛶 − 𝛶𝛵𝛸𝛩 + 𝛶𝛵𝛶)

=  
1

2
∇𝜃(𝑡𝑟 𝛩𝛵𝛸𝛵𝛸𝛩 − 2 𝑡𝑟 𝛶𝛵𝛸𝛩) =

1

2
(𝛸𝛵𝛸𝛩 + 𝛸𝛵𝛸𝛩 − 2𝛸𝛵𝛶)

= 𝛸𝛵𝛸𝛩 − 𝛸𝛵𝑌 

𝐼𝑛 𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝑠𝑡𝑒𝑝, 𝑤𝑒 𝑢𝑠𝑒𝑑 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑎 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑠  

𝑗𝑢𝑠𝑡 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 𝑇ℎ𝑒 𝑓𝑜𝑢𝑟𝑡ℎ 𝑠𝑡𝑒𝑝 𝑢𝑠𝑒𝑑 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡 𝑡ℎ𝑎𝑡 𝑡𝑟 𝐴 = 𝑡𝑟 𝐴𝑇. 

𝑇𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽, 𝑤𝑒 𝑠𝑒𝑡 𝑖𝑡𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑡𝑜 𝑧𝑒𝑟𝑜 𝑎𝑛𝑑 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:  

𝜕𝐽(𝜃)

𝜕𝜃
= 𝑋𝑇𝑋𝛩 − 𝛸𝛵𝑌 ⟹

𝜕𝐽(𝜃)

𝜕𝜃
=  0 ⟹ 𝑋𝑇𝑋𝛩 = 𝑋𝑇𝑌 

𝑇ℎ𝑢𝑠, 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝛩 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑 𝐽(𝜃) 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

⟹ 𝛩 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 



𝑈𝑠𝑖𝑛𝑔 𝛩 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌,𝑤𝑒 𝑤𝑖𝑙𝑙 𝑓𝑖𝑛𝑑 𝜃 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝐽. 

 

𝑋 = [

1
3
5
7

] , 𝑌 =  [

6
8
9
11

] 𝑋 = [

1  
1  
1  
1  

1
3
5
7

] 

𝑋𝑇 = [
1
1
  
1
3
  
1
5
  
1
7
] ⟹ 𝑋𝑇𝑋 = [

1
1
  
1
3
  
1
5
  
1
7
] [

1  
1  
1  
1  

1
3
5
7

] =  [
4 16
16 84

]  

𝑋𝑇𝑌 = [
1
1
  
1
3
  
1
5
  
1
7
] [

6
8
9
11

] =  [
34
152

] 

(𝑋𝑇𝑋)−1 =
1

det(𝑋𝑇𝑋)
 [

84 −16
−16 4

] =  
1

80
 [

84 −16
−16 4

]   

det(𝑋𝑇𝑋) = 4 ∙ 84 − 162 = 336 − 256 =  80 

𝛩 = 
1

80
 [

84 −16
−16 4

] [
34
152

] =  
1

80
[
424
64

] ⟹ 𝛩 = [
5.3
0.8

] 

 
Python script: ex1_tut2.py 

 

  



2.  

a. We will try out different (a) without, L1 and L2 regularization, and (b) different 

regularization parameters. The dataset to be used is the diabetes dataset from python 

datasets, which includes 10 features and 442 samples. We will use only one feature and 

linear regression model for visualization purposes.  

 

 

As we can see from the above plots, when the regularization parameter is really small, the 

models act similar to the one without regularization. When λ increases, Ridge, Lasso and SGD 

Regressor – L2 perform the same, while SGD Regressor – L1 acts similar to the linear regression 

model without any regularization parameters. 

 

Python script:  ex2.py (includes all the models for visualization purposes) 
  ex2a_tut2.py (Linear regression model without regularization) 
  ex2b_tut2.py (Linear regression model with L2 regularization - Ridge) 
  ex2c_tut2.py (Linear regression model with L1 regularization - Lasso) 
 
 
  



b. Following this, we will use the wine dataset which is a classic classification dataset. The 

dataset consists of 178 samples of 13 features. We will extract the mean square error (MSE) 

for a) Linear regression (without regularization), b) Linear Regression with L2 regularization – 

Ridge, c) Linear Regression with L1 regularization – Lasso, d) SGD Regressor – L2 regularization 

and e) SGD Regressor – L1 regularization. Also, we will compare the results between Linear 

Regression model and SGDRegressor in Python and discuss the differences. 

 

Python script:  ex2_MSE.py (includes all the models for extracting the MSE) 

 

As we can see, when we integrate the regularization (L2) with Linear Regression model, the 

error is lower compared to the model without the regularization. Linear regression model with 

L1 regularization gives higher error from the model without regularization. When using the 

SGDRegressor with L2 regularization gives lower error than the model without regularization, 

but with L1 regularization we get even lower error. Different datasets give different errors, 

and if you re-run the script you will get a different error with the same dataset. 

 

  



sklearn.linear_model.LinearRegression() 
According to scikit-learn documentation, LinearRegression() is the ordinary least squares Linear 
Regression. LinearRegression() fits a linear model with coefficients w to minimize the residual sum 
of squares between the observed targets in the data set, and the targets predicted by the linear 
approximations. ( It is to be noted that these linear approximations involves matrix operations ) 
 
Also, scikit-learn standard linear regression object is actually just a piece of code from scipy which 
is wrapped to give a predictor object. It basically uses Normal Equation to compute the minimizer 
analytically, and will give you a warning if the relevant matrix is non-invertible. In other words, 
Normal Equation is an analytical approach to Linear Regression with a Least Square Cost Function. 
 
Also, if we wish to apply regularization techniques using LinearRegression() , we cannot do that 
directly by tuning the parameters of this class. We need to use Ridge() (This linear model addresses 
some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients 
with l2 regularization) or Lasso() (It is a linear model that estimates sparse coefficients with l1 
regularization) or ElasticNet() (It is a linear regression model trained with both l1 and l2 -norm 
regularization of the coefficients) classes of the scikit-learn library. 
 
sklearn.linear_model.SGDRegressor() 
The class SGDRegressor() implements a plain stochastic gradient descent learning routine which 
supports different loss functions and penalties to fit linear regression models. 
 
In stochastic gradient descent, we repeatedly run through the training set one data point at a time 
and update the parameters according to the gradient of the error with respect to each individual 
data point. In other words, gradient descent uses an iterative approach, starting with random 
values of coefficients and intercept and slowly improving them using derivatives. 
 
The loss parameter of SGDRegressor() provides the opportunity to change the loss function being 
used. The default is set to squared_loss which refers to the ordinary least squares fit. The 
SGDRegressor() also provides a penalty parameter which basically acts as a regularization term and 
its default value is l2 that is Ridge Regression. It can also be set to l1 or elasticnet. 
 
As we run the second code cell provided above multiple times, we will obtain slightly different 
values for loss each time. One should understand that as SGDRegressor() is an iterative approach, 
the parameters (that is coefficients and the intercept) obtained for the regression fit on every 
function call will differ slightly from one another. This can be prevented by fixing the random state 
of the model. To have reproducible output across multiple function calls, the parameter 
random_state can be set to an integer value while declaring the SGDRegressor() model. 
 
When to use which class for Linear Regression model fitting? 
It is to be understood at this point that Ordinary Least Squares being the analytical approach is not 
memory efficient when the size and/or the features of a data set increases. So, LinearRegression() 
approach is an effective and a time-saving option when one is working with a dataset with small 
features. 
 
When it comes to memory efficiency, SGDRegressor() comes to the rescue. So, we can train 
SGDRegressor on the training data set, that does not fit into RAM. Also, we can update the 
SGDRegressor model with a new batch of data without retraining on the whole data set. So, 
SGDRegressor() approach is an effective one when one is working with the large data set, that is, 
large number of data points and/or features. 
  



3. In this example, we will work on Logistic Regression and by using a manually constructed dataset 
with 2 classes and 5000 samples. Following this, we will use the iris dataset which includes 150 
samples, 4 features and 3 classes. We will also try different (a) learning rates and (b) 
regularization constants. 
 
 
Python script:  ex3_tut2.py  

 
 
Confusion matrix: 

 


