ECE 805 — Machine Learning

Tutorial 2, Monday, January 30, 2023

1.

In this method, we will minimize J by explicitly taking its derivatives with respect to the
9]-'5 and setting them to zero. Let’s introduce some notation for doing calculus with
matrices.
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Using the fact that for a vector z,we have that z'z = Z z?
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Finally, to minimize J, lets find its derivatives with respect to 6.

We know that V,r tr ABATC = BTATCT + BATC
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In the third step, we used the fact that the trace of a real number is
just the real number.The fourth step used the fact that tr A = tr AT,

To minimize J,we set its derivatives to zero and obtain the normal equation:
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Thus, the value of @ that minimized J(0) is given by the equation:
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Using @ = (XTX)71XTY,we will find 6 that minimizes J.
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Python script: ex1_tut2.py



a. We will try

out different (a) without, L1 and L2 regularization, and (b) different

regularization parameters. The dataset to be used is the diabetes dataset from python
datasets, which includes 10 features and 442 samples. We will use only one feature and
linear regression model for visualization purposes.
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As we can see from the above plots, when the regularization parameter is really small, the
models act similar to the one without regularization. When A increases, Ridge, Lasso and SGD
Regressor — L2 perform the same, while SGD Regressor— L1 acts similar to the linear regression
model without any regularization parameters.

Python script:

ex2.py (includes all the models for visualization purposes)
ex2a_tut2.py (Linear regression model without regularization)
ex2b_tut2.py (Linear regression model with L2 regularization - Ridge)
ex2c_tut2.py (Linear regression model with L1 regularization - Lasso)



b. Following this, we will use the wine dataset which is a classic classification dataset. The
dataset consists of 178 samples of 13 features. We will extract the mean square error (MSE)
for a) Linear regression (without regularization), b) Linear Regression with L2 regularization —
Ridge, c) Linear Regression with L1 regularization — Lasso, d) SGD Regressor — L2 regularization
and e) SGD Regressor — L1 regularization. Also, we will compare the results between Linear
Regression model and SGDRegressor in Python and discuss the differences.

Python script: ex2_MSE.py (includes all the models for extracting the MSE)

As we can see, when we integrate the regularization (L2) with Linear Regression model, the
error is lower compared to the model without the regularization. Linear regression model with
L1 regularization gives higher error from the model without regularization. When using the
SGDRegressor with L2 regularization gives lower error than the model without regularization,
but with L1 regularization we get even lower error. Different datasets give different errors,
and if you re-run the script you will get a different error with the same dataset.

squared error - without regularization: ©.104188
squared error L2 regularization: ©.076494
squared error L1 regularization: ©.089945

squared error - SGD-L2: ©.089253
squared error - SGD-L1: ©.086917




sklearn.linear_model.LinearRegression()

According to scikit-learn documentation, LinearRegression() is the ordinary least squares Linear
Regression. LinearRegression() fits a linear model with coefficients w to minimize the residual sum
of squares between the observed targets in the data set, and the targets predicted by the linear
approximations. ( It is to be noted that these linear approximations involves matrix operations )

Also, scikit-learn standard linear regression object is actually just a piece of code from scipy which
is wrapped to give a predictor object. It basically uses Normal Equation to compute the minimizer
analytically, and will give you a warning if the relevant matrix is non-invertible. In other words,
Normal Equation is an analytical approach to Linear Regression with a Least Square Cost Function.

Also, if we wish to apply regularization techniques using LinearRegression() , we cannot do that
directly by tuning the parameters of this class. We need to use Ridge() (This linear model addresses
some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients
with 12 regularization) or Lasso() (It is a linear model that estimates sparse coefficients with |1
regularization) or ElasticNet() (It is a linear regression model trained with both I1 and 12 -norm
regularization of the coefficients) classes of the scikit-learn library.

sklearn.linear_model.SGDRegressor()
The class SGDRegressor() implements a plain stochastic gradient descent learning routine which
supports different loss functions and penalties to fit linear regression models.

In stochastic gradient descent, we repeatedly run through the training set one data point at a time
and update the parameters according to the gradient of the error with respect to each individual
data point. In other words, gradient descent uses an iterative approach, starting with random
values of coefficients and intercept and slowly improving them using derivatives.

The loss parameter of SGDRegressor() provides the opportunity to change the loss function being
used. The default is set to squared_loss which refers to the ordinary least squares fit. The
SGDRegressor() also provides a penalty parameter which basically acts as a regularization term and
its default value is |2 that is Ridge Regression. It can also be set to |1 or elasticnet.

As we run the second code cell provided above multiple times, we will obtain slightly different
values for loss each time. One should understand that as SGDRegressor() is an iterative approach,
the parameters (that is coefficients and the intercept) obtained for the regression fit on every
function call will differ slightly from one another. This can be prevented by fixing the random state
of the model. To have reproducible output across multiple function calls, the parameter
random_state can be set to an integer value while declaring the SGDRegressor() model.

When to use which class for Linear Regression model fitting?

It is to be understood at this point that Ordinary Least Squares being the analytical approach is not
memory efficient when the size and/or the features of a data set increases. So, LinearRegression()
approach is an effective and a time-saving option when one is working with a dataset with small
features.

When it comes to memory efficiency, SGDRegressor() comes to the rescue. So, we can train
SGDRegressor on the training data set, that does not fit into RAM. Also, we can update the
SGDRegressor model with a new batch of data without retraining on the whole data set. So,
SGDRegressor() approach is an effective one when one is working with the large data set, that is,
large number of data points and/or features.



3.

In this example, we will work on Logistic Regression and by using a manually constructed dataset
with 2 classes and 5000 samples. Following this, we will use the iris dataset which includes 150
samples, 4 features and 3 classes. We will also try different (a) learning rates and (b)

regularization constants.

Python script:
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