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Key Questions / Challenges for RITICS Phase1 ™' | @ >
[2014-2018)

1

Do we understand the harm threats pose to

our ICS systems and business?

Can we confidently articulate these threats

as business risk?
..:

What could be novel effective and efficient
interventions?

/



RITICS Phase 1Projects RITIGS

* RITICS (Hankin, Chana, Imperial
College London)

« MUMBA (Rashid, Lancaster/Bristol)

 CEDRICS (Bloomfield, Popov, City)

« SCEPTICS (Easton, Chothia,
Birmingham)

 CAPRICA (Sezer, Queen’s University
Belfast)



Impact of Phase 1 NEN @D

» Creation of a new research community
< Contribution to new Cyber Security Strategy for UK railways.

» Tools for building models of complex cyber physical
systems.

< Testbeds.
< A serious game for studying security decisions.

< Secure implementation of gateway module compatible with
IEC and IEEE standards.

< Contribution to European work on certification of ICS
components.

Rail Cyber
Security Strategy




RITICS Phase 2

Barriers

Economics

Response Protect

B2 National Cyber
##<| Security Centre

Research Council



The RITIGS Programme

NIS Directive —
baseline,
barriers, impact

Safety and
Security

Incident

Response and Cyber Controls
Forensics

Supply Chain

Autonomous
Systems

Interconnected
Systems



NIS Directive RITICS

e How many shades of NIS: Understanding
ri% Organisational Cybersecurity and Sectoral
Differences - Bristol

Effective Solutions for the NIS Directive:
'\‘ Supply Chain Requirements for Third
O~  Party Devices - Birmingham

Establishing a Scientific Baseline for

\/ Measuring the Impact of the NIS Directive
on Supply Chain Resilience - Glasgow



second Call RITIGS

AIR4ICS: Agile Incident Response For Industrial Control
Systems — DMU

Cloud-enabled Operation, Security Monitoring, and
Forensics (COSMIC) — QUB

Developing Pedagogy to Optimise Forensic Training in
Safety-Related Industrial Control Systems (ICS) —
Glasgow

Interconnected safe and secure systems (I1S3) - City



Third Call RITIGS

Diversity-by-design: Quantifying vulnerability similarity
of Interconnected Networks - Cardiff

Emergence of cybersecurity capability across
interdependent critical infrastructure, from the nexus
of business, engineering and public policy interests —
Glasgow/Belfast

NDN for Secure Industrial loT Networking - Belfast
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Three contributions:
* Measuring Cyber-physical security
» Software Diversity

Al and Intrusion Detection



Security Metrics

With Martin Barrere, Demetrios Eliades,
Nicolas Nicolaou and Thomas Parisini



Agenda

1. Introduction

2. Base security metric (weighted AND/OR graphs)

3. Extended security metric (AND/OR hypergraphs)

4. Analytical evaluation

o

Case study on water transport networks

6. Conclusion and future work
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Infroduction

» Goal: security metric for ICS networks

= AND/OR graphs to model complex interdependencies
between cyber-physical components

» |dentify critical ICS nodes, with minimal compromise
cost, that could disrupt the operation of the system
= NP-complete problem
= Multiple overlapping security measures

= Measure security levels, compare different ICS settings

K@LOC
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ICS network model (simple example) Wa\ 6i

’© R

actuator (c1) AE ﬂ‘

agent (d) [,? \10\

AND AND

\9 2

sensor (c)

= AND/OR graph with sensors, software agents and actuators

= Adversarial model: an attacker can compromise any network node
n € Var at a certain cost ¢(n) with ¢ : Var — R

K@LOC

= Compromised node: component unable to operate properly

www.kios.ucy.ac.cy



Least-effort attack strategy (critical nod&%&é

= Objective: set of nodes, with minimal cost (effort) for an attacker,-|
such that if compromised, the system would enter into a non-
operational state

»° :
actuator (c1) 8% ﬂ‘

=  Solution:
o Critical nodes: a, ¢
o Total cost: 4

2. 2
a ) A
sensor (a) sensor (c)

» Problem: identifying critical nodes in AND/OR graphs => NP-complete
(Desmedt et al. (2004); Jakimoski et al. (2004); Souza et al. (2013))

K@LOC
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MAX-SAT resolution approach Ea\ 6i

MAX-SAT problem: find a truth assignment that maximises "
the weight of the satisfied clauses (or minimise the weight of

falsified clauses)

1. AND/OR logical transformation:
falcl)=cl A(dAN ((anb)V (bAC)))

2. Attacker’s objective:
—fa(cl) ==(cILA(dA ((aAND)V (bAC))))

3. MAX-SAT problem specification:

= Falsification penalty scores
a b c d cl
pla) =2 | p(b)=5 | ¢(c) =2 | ¢(d) =10 | ¢(cl) =inf

=  MAX-SAT solution: minimises the penalty induced by falsified
weighted variables

www.kios.ucy.ac.cy
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Visualisation system (META4ICS) kﬁa\ 6i

® © ® [ localhost:8000/viz.html X +

< C  ® localhost:8000/viz.html
22
o S '8(10)

2 (inf) ».b ) :Vr‘d A.Cl (inf)
el AR

= METAA4ICS: Metric Analyser for Industrial Control Systems

Available at: https://github.com/mbarrere/meta4ics

K@LOC
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https://github.com/mbarrere/meta4ics

Multiple overlapping security measures W;\(\\{i

i 7>
)(/
—3/
)

s3:M1 @ s4:M4

5) > AND

sensor (a) A \

s1:M2 I

@ L agel;nt (b /
-‘/\Q \ s —S5:NIE
> > AND [%
| sensor (c) 4 actuator (c1)‘ @

= Set of security measure instances: S = {s1,s2,...}
= Cost function (attacker’s effort): ¥ : S — Rx>q

wn

N
<
w

@

O Measure instance sl 52 53 s4 s5
0 — Measure type M?2 M3 | M1 | M4 | M5

" Attacker’s cost () 3 7 2 12 | inf

\_/ Protection range {a,c} | {b} | {a} | {d} | {c1}

www.kios.ucy.ac.cy



Extended security metric (formulation)

u(G.1) = argmin( 37 ple) + Do wlsy))
=VAT g,eX 5;€S5(X
s.t. -
wee(o(G, X)) >2Vv X ={t}

= |nputs: AND/OR graph, target node
= Solution node set: XCVar

= Functions:

o S(X) => set of measure instances {5, - . . , $; } protecting X
o (@G, X) =>removes nodes in X from G
@ wcc(G) => weakly connected components

K@1OC
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AND/OR hypergraph-based approach Nﬁ 6#

» Hypergraphs: generalisation of standard graphs where graph At
edges (hyperedges) can connect any number of vertices

x

o)

V;\

3

\ﬁ’e %/\ > AND
a s3 )
b />L
(&
sl
s2
C \_/
\ eg\, > AND
€1 €2 €3 €4 es
{a,s1,s83} | {c,s1} | {b,s2} | {d,s4} | {cl,s5}

K@1OC

fr(ed) =eb Aed A((el ANe3) V (e3 N e2))
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AND/OR hypergraph resolution

hg(cl) = (c1VsB) A (dV sd) A
((avslVvs3)A(bVs2)V((bVs2)A(cVsl)))

= Attacker’'s compromise costs (used as MAX-SAT penalty values):

o Atomic nodes: ¢(n) = 1,Vn € Var

Measure instance sl S2 s3 s4 sH
Attacker’s cost 1(s;) | 3 7 2 | 12 | inf

o Measure instances:

=  First attempt: falsify (b v s2)
o Cost:1+7=38
= Second attempt: falsify (a V s1V s3) and (cV sl)
o Costfor set {a,s1,83,¢}:1+3+2+1=7 (MIN)

K@1OC
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Disjoint security measures

Weighted partial MAX-SAT resolution time
Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

%0 ! ! ! ! '

| | |
1 security measure per node —+—
: : ; ; 5 security measures per node —&—
50 e ] . S 7 security measures per node _
| | | | 10 security measures per node

T e T
of
20

10

Average resolution time (seconds)

q 600 2000 3000 4000 5000 6000 7000 8000 9000 10000
8 Number of graph nodes
27" = Scalability evaluation while increasing graph size
¥ = Fast resolution for base problem (one measure per node)

www.kios.ucy.ac.cy



Overlapping security measures (1)

Weighted partial MAX-SAT resolution time - Pseudo-random AND/OR graphs - 1000 nodes
Conf(60,20,20) - Overlapping variation between 0 and 100%

1100 i i

| |
1 security measure per node —+—
: ; 3 security measures per node —&—
1000 5 security measures per node 7
: : 7 security measures per node

10 security measures per node —eo—

900 A o SETT R s -
T e e f
S eeeee |
600 ° | ‘ ‘ ‘

500

Average resolution time (milliseconds)

400
0 0.2 0.4 0.6 0.8 1

Probability of overlapping security measures (0: no intersection, 1: full intersection)

» Variation analysis of overlapping measures
= Graph with 1000 nodes

www.kios.ucy.ac.cy
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Overlapping security measures (2)

Probability variations on AND-OR graphs (5 security measures)

30
7 Probability 0.0 Probability 0.5 w2771 Probability 1.0
»
o 25 ]
@]
O
(]
L N 9 B |
o R L i iiEPBiii i
£ W
= N\
R NN .
S ] NN
S N
o) NN \\ii
= N7 N 7
< N\ \\\\
? N N
x N\ NN
<< B N\ R 77/ = \\s rrrrrrrrrrrrrrrrrrrrrrrrrrrrr —
= ?\\\ \\\
N N\
NN AN
\\i \5\\

G(1000 nodes) G(3000 nodes) G(5000 nodes) G(7000 nodes) G(10000 nodes)
Overlapping configuration (0%, 50%, 100%)

= Qverlapping analysis on graphs of different sizes
= Same pattern (more overlapping => faster resolution)

www.kios.ucy.ac.cy
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Case study Wa\ 6i

» Focus: water transport networks (base sub-system)

PLCT1 PLC P1
"""" N
@ 5(k) ? Cl(k)
& T T
Tank @ Centrifugal
T1 Pump
s3 Pl Borehole

= Pressure sensors s1 (before) and s2 (after) the pump P1

= Flow sensor s3 (pump outflow)

Water level sensor s5 at tank T1 with flow sensors (s4 and s6)
= Two PLCs: agent a1 (tank T1) and agent a2 (pump P1)

K@LOC
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Case study

= Base sub-system repeated in larger infrastructures

— V3K — — —

v
PLC
P3
-— 2 —— o
: c3(k)
_______ o Y G
! PLC
L ’ P2 \ 613 >\_—£{
PLC PLC I Centrifugal
P1 T1 c2(K) @ Pump
_l I @ - P3
— Tank
Cl('O/ ) 6 I T2
A @® @ S,
O Centrifugal
4 & pump
—‘ |7 Centrifugal (s6) > 2
Pump Tank
Borehole P1 T1

K@1OC
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Data collection and preparation T

= Measures acquired from utility operators and public sources
= Attacker’s cost: three-point rating scale

Factor / Rate 1 2 3
Skills (1) no special skills/knowledge advanced skills/knowledge expert skills/knowledge
Tools (f2) off-the-shelf tools non-conventional tools required specialized tools
Time (f3) < 10 min 10-30 min > 30 min
Measure | Skills | Tools | Time | Attack| Description
cost
F1 1 1 1 1 Fenced area (wire)
F2 1 2 1 2 Fenced area (locked
= (Cost function underground facility)
B1 1 1 2 2 Building + regular lock
Y(m) = f1x f2x f3 [Bo > 2 > 8 Building + secure lock
u A1 2 3 2 12 Door alarm
O A2 3 2 3 18 Alarm on telemetry box
2 A3 1 1 3 3 Patrol unit
" P1 1 2 1 2 Locked box
v P2 2 2 2 8 Cable protection

www.kios.ucy.ac.cy



N
~

~

\
Base subsystem (no redundancy) N, Y

Components Security measures Total cost
s3 {F2-1, P1-2, A2-2} 22
sh {F1-2, B1-1, A3-1, P2-2} 14
al {F1-2, B1-1, A3-1} 6
a2 {F1-1, B2-1, P1-1, A2-1} 29
cl {F1-1, B2-1} 9 +inf (special case)

. 22)

= Solution:
B A p3-al
o Critical nodes: agent a1 _s_(inf) ﬁ

o Security measures:
F1-2, B1-1, A3-1 6)
o Total cost: 6 N—

META4ICS display

K@1OC
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| Components | Security measures Total cost
a2,a7,a8,al0| {F1-1,B2-1, P1-1, A2-1} 29
al,a3, a9 {F1-2, B1-1, A3-1} 6
s, s2 {F1-1, B2-1} 9
cl {F1-1,B2-1} 9 +inf (special case)
s3 {F2-1, P1-2, A2-2} 22
s4 {F1-2,B1-1, A3-1, P2-1} 14
s5 {F1-2, B1-1, A3-1, P2-2} 14
s6 {F2-2, P1-3, A2-3, A3-1} 25
Measure | Measure | Attacker | Protection range
instance | type cost
F1-1 F1 1 {a2,a7,a8,al0,cl, sl, s2}
F1-2 F1 1 {al,a3, a9, s4,s5}
F2-1 F2 2 {s3}
F2-2 F2 2 {s6}
B1-1 B1 2 {al, a3, a9, s4, s5}
B2-1 B2 8 {a2,a7,a8,al0,cl, sl, s2}
A2-1 A2 18 {a2,a7,a8,al10}
A2-2 A2 18 {s3}
A2-3 A2 18 {s6}
A3-1 A3 3 {al, a3, a9, s4, s5, s6}
u P1-1 P1 2 {a2,a7,a8,al10}
O P1-2 P1 2 {s3}
P1-3 P1 2 {s6}
Q P21 P2 8 (54}
" pP2-2 P2 8 {s5}
A%

www.kios.ucy.ac.cy




Extended scenario (META4ICS display)

® O ® @ locahost:8001/viz.html x 4+

& C (@ localhost:8001/viz.html

v
O

zd
&

= Solution: nodes a1 and s2, instances F1-2, B1-1, A3-1, F1-1, B2-1
VY = Total cost: 15

www.kios.ucy.ac.cy
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Conclusion

= |dentification of security-critical nodes in ICS environments
= Security metric as least-effort attack strategy

= AND/OR graph-based models
= Base problem (weighted AND/OR graphs)
= Multiple overlapping security measures (AND/OR hypergraphs)

= Combination of AND/OR graphs with MAX-SAT optimisation
techniques

= Experimental results indicate very good scalability

= Practical analysis of a realistic water transport network

www.kios.ucy.ac.cy
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Future work

Evaluation on other ICS environments
= Smart grid, power plants

Integrate attack graphs at the cyber level

Consider budget constraints

Automated generation of AND/OR graph models for ICS

K@LOC

www.kios.ucy.ac.cy



Software Diversity

With Tingting Li and Feng Cheng



Motivation

Software Diversity -- an Effective Defense Strategy

» Software mono-culture promotes and accelerates the spread of malware.
» Diversification can mitigate the infection of malware between similar products and
reduce the likelihood of repeating application of single exploits.

» More essential when combating zero-day exploits.
Existing work on Diversity-inspired defence

» From the software development: n-version programming, code randomization, etc..
» From the perspective of security management:

e Optimal product assignment by distributed colouring algorithm [CCS’04]

e Diversifying routing nodes in a network [TDSC’15]

e Security metrics to evaluate network diversify and resilience. [ESORICS’10, TIFS’16]
» Assumption -- Products share no vulnerabilities between each other.
@ @

> Assumption -- only one vulnerable product/service running at each host.
@ t @ ent
entr entr
=% 3@ ?{ +@§ +é§ L. %}?

1" target target 0.5 target 0 5 target
= exploit
(a) Mono-culture single-label (b) diversifying single-label (c) diversifying single-label (d) diversifying multi-label

hosts hosts hosts with similarity hosts with similarity



Main Contributions

Objectives

» An accurate model to determine the infection of potential exploits across a network.
» An efficient way to find product assignments to minimise the prevalence of Oday exploits.

Main Contributions
» Modelled various services/products at each host and exposed attack vectors.

» Proposed the metric vulnerability similarity of products; Statistical study of CVE/NVD.

» Formally model the multi-labelling network by a discrete Markov Random Field (MRF),
Optimised by the sequential tree-reweighted message passing (TRW-S) algorithm.

» A case study inspired by Stuxnet Propagation to
* Find the optimal assignment against the collaboration of multiple Oday exploits
e Evaluate the optimal result in a NetLogo simulation in terms of MTTC.

» Scalability analysis of our optimisation method against
» Large-scale networks with up to 10,000 hosts.
» High-density networks with up to 50 degrees (# edges) per host.
» High-complexity networks with up to 30 products/services per host.
» Most heavy cases converged from a couple of seconds to ~3 minutes.



Similarity Metrics
Similarity of Products Vulnerability based on CVE/NVD

» Firstly define the similarity between a pair of products;
e capture statistically how similar the vulnerabilities found on two products are.
e likelihood of being compromised by the same exploit.

Definition 1 Let z;, x; be a pair of products, V, and V., are vulnerabilities
of z; and x; respectively. The vulnerability similarity between x; and x; can be
obtained by the Jaccard similarity coefficient:

B Ve, NV, |

sim(mi, Ij) = W
X Tj

» Common Vulnerability Enumerations (CVE) and National Vulnerability Database (NVD)

CVE-ID CVE-2016-7153

Overview The HTTP2 protocol does not consider the role of the TCP congestion window in
providing information about content length, which makes it easier for remote attackers
to obtain cleartext data by leveraging a web-browser configuration in which third-
party cookies are sent, aka a "HEIST” attack.

Common Platform Enumerations(CPE):

Release September 6th, 2016 ;
Date - well-formed naming scheme for IT
CVSS Base Score: 5.0 MEDIUM; Vector: AV:N/AC:L/Au:N/C:P/I:N/A:N ;
’ : systems, platforms and packages.

Severity Impact Subscore: 2.9; Exploitability Subscore: 10.0 Y ' P P &
CVSS V2 Access Vector: Network exploitable; Access Complexity: Low;
Metrics Authentication: Not required to exploit;

cpe:/a:microsoft:edge:- cpe:/a:microsoft: ir.lternet_explorer:— cpe:/PART : VENDOR : PRODUCT : VERS ION
Vulnerable cpe:/a:google:chrome: - cpe:/a:apple:safari
software cpe:/a:mozilla:firefox cpe:/a:opera:opera_browser:-

& Versions




Similarity Metrics
Similarity of Products Vulnerability based on CVE/NVD

» 84,229 vulnerabilities in NVD; CPE serves to sort vulnerabilities according to affected products.
» Compare most vulnerable OS products and Web Browsers [CVE Details] from 1999 to 2016.
|| WinXP2 | Win7 Win 8.1 | Winl0 ‘ Ubt14.04 ‘ Deb8.0 ‘ Mac10.5 ‘ Susel3.2 | Fedora
WinXP2 || 1.00 (479)
Win7 || 0.278 (328) | 1.00 (1028)
Win8.1 0.009 (10) | 0.228 (298) | 1.00 (572)
Winl0 0 (0) 0.124 (164) | 0.697 (421) | 1.00 (453)
Ubt14.04 0 (0) 0 (0) 0 (0) 0 (0) 1.00 (612)
Deb3.0 0 (0) 0 (0) 0 (0) 0 (0) 0.208(195) | 1.00 (519)
Mac10.5 0 (0) 0.081 (109) 0 (0) 0 (0) 0 (0) 0 (0) 1.00(424)
Susel3.2 0 (0) 0 (0) 0 (0) 0 (0) 0.170(161) | 0.112 (102) 0 (0) 1.00(492)
Fedora 0 (0) 0 (0) 0 (0) 0 (0) 0.083(75) 0.049 (41) 0.001(1) | 0.116 (89) | 1.00(367)
| IES | IE1I0 | Edge | Chrome | Firefox | Safari | SM | Opera
IES 1.0 (349)
IE10 0.386 (240) | 1.0 (513)
Edge 0.014 (7) | 0.121 (73) | 1.0 (194)
Chrome 0 (0) 0 (0) 0.001 (2) | 1.0 (1661)
Firefox 0 (0) 0 (0) | 0.001 (2) | 0.005 (15) | 1.0 (1502)
Safari 0 (0) 0 (0) 0.002 (2) | 0.009 (21) | 0.003 (6) | 1.0 (766)
SeaMonkey 0 (0) 0 (0) 0 (0) 0.001 (3) | 0.450 (683) | 0.001(1) | 1.0(492)
Opera 0 (0) 0 (0) 0.003 (1) | 0.003 (6) | 0.004 (7) | 0.004(4) | 1.00(492) | 1.00(225)




Similarity Metrics
Similarity of Hosts and Infection Models

> Each host runs a set of services: Sy, = {s1,...,5,}, where Sp,, € 2°
> Each service is provided by a set of products: p(s;) = {pzsj, - ,p’;"j }, where p;j cP
> An assignment of products for a host: a(h;, Sp,) = (& (hi, s1), ..., (hi, sk)) = (P, -

» Estimate the infection rate by comparing the assigned products (i.e. S|m|Iar|ty of hosts).
S’l,m(()é(h“ S ) (h’j7 Sh —

max {sz’m(a’(hi,sk),o/(hj,sk))}, for sophisticated attackers

..,p?k)

VSkGSh ﬂS
random {szm(a’(hi, sk), o (hj,sk))}, for naive attackers
VSkGSh ﬂSh
Services Products
51
(a) available products (b) a network (c) the infection model

with assigned products



Optimal Assignment of Diverse Products
Formal Model by Markov Random Field (MRF)

Each service has various selections of products = up to | P|labels.

Each host provides multiple services = up to |P| x | S| labels.

Sufficient flexibility and generality.

Existence of feasible/efficient optimisation solution.

The optimal diversification problem - find an optimal label for each service at each host

VV V V VY

Optimisation

» Given an infection model G := (H, L, ), the energy function is given as:

BG = Y ethes)t S wlalhnSh).alhy,Sh))

h;€H,s€S; (hi,hj)eL
& = argminE(G)
= argmm Z Z Preonst + Z Z sim(a(hg, Sp, ), a(hj, Sh;))
hi€H s;ESh, (hish;)EL sKESh, ﬁSh

» Solved by tree-reweighted message passing algorithm (TRW-S) [TPAMI’15].
» Generally guarantees an optimal solution; outperforms others algorithms in heavy tasks.



Case Study— Stuxnet Propagation

Corporate Network DMz

m el: Support eZ Suppor‘t
% Station 71 V|russ an Sever z2: MSUS Sever

cl: WinCC Web Client

@ f1: front flrewall ‘ t
S £2: back fi

ewall
c2: OS Web Client 23: Web 24: OS Web
Navigator Server  Sever

N
Operations Network

c3: Data Monitor

& o &

c4: Hist Web pl: H|stor|an p2: SIMATIC p3 SIMATIC
Jeotaln it Web Client IT Server  SQL Sever

Client —
@ @ ‘Contm' Network (b) The corresponding network topology
S
tL: Ma' tenance 3. \winCC/Client t2: SCI|ent -
Server |Services| Products [c1]c2|c3]ca|z1]22|23 |24 pt[p2|p3|ui || ]u]5]w6]
)
Windows8 | v |v |v |V |v |v|v v v|v|v|v|v|v|v|v]|v
si: [ Windows 10 | v | v |v |v |V |v|v|v|vIv|v|v|v|v|v]v]|v
0s buntu 14.04
t6: WmC Server t5: Wm C Server t4: O%Server Hbunitu 140 4 s 1V Y
) Debian 8.0 v v
‘ s2: IE8 vV Vviv|v viviviv|vy
“ & Web El0 |v|v|v|v & | & || || ||| 2] #
: Brows
£1:57-300  £2:S7-400 £3:57-300 4: S7-400 rowser| Chrome 50 v v AL L
(a) A four-zone networked ICS architecture 831 e LA MLALALAS N
Database MS SQL 2014 VIV v VIiVIvIVv v
. L MySQL 5.5 v v
[Tofino Security’11] Server MariaDB 10 v y

(c) Available products for each host [WinCC Manual]



Case Study— Stuxnet Propagation

c4

Debian8

Chrome

MySQL

cl
Win8
IES 22
c2 Win8
Ubt14 MSSQL12
Chrome
c3 i
Wing 5 A
IE8 Win10 Ubt14.04
MSsQL12 IE8 IES
pl p2
Ubt14.04 Win10
Chrome IE8
MySQL MssQL14
p3 f2
Win8
MSSQL12
tl t3 t2
Win8 Win10 Ubt14.04
IE8 IE10 Chrome
MSsQL14 MSSQL12
t6 5 t4
Win8 Win8 Win8
IES IES IE10

» The solution uses product similarities obtained from CVE/NVD statistically.

» Minimizes the infection rate at each edge by choosing most diverse product pairs.

» Locally optimal assignment might be discarded for global optimum (e.g. ¢4 and c2).
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Case Study— Stuxnet Propagation

NetLogo Simulation for Evaluation

NetLogo is an agent-
based modelling tool.

Programmable modelling
environment

Simulate behaviours of
systems and natural
phenomena over time.

Two attacker modes.
# Ticks = MTTC

Six hosts are seamlessly
protected.

Real-time plot of MTTC

P evaluation_v3 - NetLogo {C:\Users\tI308\Dropbox\PostDoc\Vulnerability\netlogo\case-ics}

File Edit Tools Zoom Tabs Help

Interface | Info | Code

Al |
Edit Delete Add

faster

ﬂ view updates

=




Case Study— Stuxnet Propagation
NetLogo Simulation for Evaluation
» Compare the OPTIMAL assignment with a RANDOM assignment in terms of MTTC.

Naive Attacker Sophisticated Attacker

80 80

70| A RIO RS Tl FOi G i?ﬁl’?fr'n O Avg. 44.93, STD 6.12 -
AGO AGO
g0 3 0|
S o) \ | u U = wff
s F’lw W '\ iy “ i ‘ M W 11" 0 ul ML filf M il lh rM 'u
|—.
S 2

20

10 Avg. 30.18, STD 6.95 10 Avg. 28.78, STD 7.0

00 2(I)0 460 G(I)O 8(I)0 1 060 00 2(I)0 400 600 800 1 060

Iterations Iterations
(a) (b)
» An extra experiment with a larger network (100 nodes, ~300 edges and 5 services per host).
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Scalability Analysis on Random Networks
Scalability with Randomly generated networks

» Computational time consumed by optimising a set of randomly generated networks.
» Three key parameters: # hosts, # degrees (edges per host), # services per host.

8 -

@ °
a2t
0 : 5 10 15 20 25 30 35 40 45 50 10 15 20 25 30
R g %000\00@ Number of Degrees ® Number of Services
Number of Hosts

> (A) fixed # degree = 3, # services =3
> (B) fixed # hosts = 100, # services =3
» (C) fixed # hosts = 100, # degrees = 30
» Mid-range computer: Intel i5 2.8GHz CPU, a 8GB RAM and a nVidia GTX 750
» The # hosts has a major impact. Still converged within 7.342 seconds for 10,000 hosts.



Scalability Analysis on Random Networks
Scalability with Randomly generated networks

» Scalability analysis against high-density, high-complexity and large-scale networks.
» Performs well and converges within about 3 minutes.

Table 1: Computational time (in seconds) for networks of various densities over different # hosts
# hosts
100 200 400 | 600 | 800 | 1000 | 2000 | 4000 | 6000

mid-density | 20 | 15 || 0.239 | 0.438 | 1.099 | 1.478 | 1.944 | 2.784 | 6.706 | 16.517 | 33.392
high-density| 40 | 25 || 0.640 | 1.766 | 3.553 | 5.881 | 8.135 | 10.999 | 27.484 | 82.500 | 151.110

# deg. |# serv.

Table 2: Computational time (in seconds) for various sizes of networks over different # degrees
#deg.

5 |10 ] 15 2 | 25] 30 | 33 | 4 | 45 | 50

mid-scale | 1000 | 15 0.759 | 1.577 | 1.954 | 2.693 | 3.294 | 4.040 | 4.652 | 5.174 | 5.758 | 6.309

large-scale| 6000 | 25 |/21.239]|40.940(59.216|77.583|95.750|117.810{144.470{152.040{167.190(189.710

# hosts |# serv.

Table 3: Computational time (in seconds) for various sizes of networks over different # services
#serv.

5 10 15 20 25 30
mid-scale | 1000 | 20 | ~ 20,000 || 0.603 | 1.608 2.709 4.008 3:253 6.974
large-scale| 6000 | 40 |~ 240,000/(10.306| 27.214 | 51.587 | 90.407 | 134.340 | 188.050

# hosts |# deg.| # edges




Conclusion and Future work

Proposed an efficient way to mitigate zero-day infection over a network by optimally
diversifying products deployed on the hosts

Introduced the similarity metric to capture how similar the vulnerabilities of two products
are. Applied in statistical study on CVE/NVD database.

Estimated the infection rate of malware between products by the similarity metrics.
A multi-label model is adopted to capture the spread of multiple zero-day exploits.
Developed an efficient and scalable optimisation method.

Other sources/ways to measure the similarity metric.

Consider interdependency between services and preference over products.



Intrusion Detection

Work by Deeph Chana and Feng Cheng



NIDS — Anomaly Detection (Cheng, Li and Chana)

Package Level Detection by Bloom Filter

» Construct a signature database by observing regular communication patterns.
» Incorporate the signature database into the bloom filter detector.
» Detect anomalous data packets at packet-content level.

Time-series Level Detection by Long Short Term Memory (LSTM)

» Address temporal dependence between consecutive packets
» Learn the most likely packet signatures from seen packets by LSTM.
» Further classification of packets at time-series level.

Evaluation by Public ICS Database and Comparison

» Apply to a public /ICS dataset created from a SCADA system for a gas pipeline.

» Significantly outperform other existing approach and produce state-of-the-art
results.



Public ICS Dataset by Mississippi State SCADA Lab

Mississippi ICS Attack Dataset

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

* A lab-scale testbed of a gas pipeline

SCADA

* Deep inspection of Modbus data log
e 214,580 normal packets + 60,048

attack packets

e 20 unique features in ARFF Format.

e 7 common types of attacks.

label
Random state change or attack

AutolT Random Attack
HMI State
Network

packets

Data Collection Model (Turnipseed 2015)

@ Secure | https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets ¥ | |
¢

Industrial Control System (ICS) Cyber
Attack Datasets

Dataset 1: Power System Datasets

Uttam Adhikari, Shengyi Pan, and Tommy Morris in collaboration with Raymond Borges and Justin Beaver of
Oak Ridge National Laboratories (ORNL) have created 3 datasets which include measurements related to
electric transmission system normal, disturbance, control, cyber attack behaviors. Measurements in the
dataset include synchrophasor measurements and data logs from Snort, a simulated control panel, and relays

Dataset 4: New Gas Pipeline
lan Tumipseed developed a new set of datasets with more randomness. These datasets are only from the gas
pipeline control system

Raw Dataset
Dataset in ARFF Format

System Mode Pump State

MW [Control Scheme elief State

Pump Override Pressure

MU Relief Override '
PID Setpoint B
PID Gain |

communication link PID Reset

PID Rate
PID DB
PID CT

RTU

|
H
™ HMI pipeline

A gas pipeline SCADA (Turnipseed 2015)



Public ICS Dataset by Mississippi State SCADA Lab

Mississippi ICS Attack Dataset

ARFF Data Format

Station Function | ength System State  Pressure CRC
Address Code Measurement

PID Parameters Time Stamp

Seven Types of Attacks

Type of Attacks Abbreviation

Normal Normal(0)
Naive Malicious Response Injection NMRI(1)
Complex Malicious Response Injection CMRI(2)
Malicious State Command Injection MSCI(3)
Malicious Parameter Command Injection MPCI(4)
Malicious Function Code Injection MFCI(5)
Denial of Service DOS(6)
Reconnaissance Recon(7)

1I 1I 1I

Label

Feature _____fype |

address

function

length

setpoint

gain

reset rate
deadband

cycle time

rate

system mode
control scheme
pump

solenoid

pressure measurement
crc rate

command response
time

binary attack
categorized attack

specificattack

Network
Command Payload
Network
Command Payload
Command Payload
Command Payload
Command Payload
Command Payload
Command Payload
Command Payload
Command Payload
Command Payload
Command Payload
Response Payload
Network
Network
Network

Label

Label

Label



Package Level Detection by Bloom Filters

Signature database

9 o e ey

Bloom Filter
* observe a large normal time-series dataset. Dete_cmr [t elt=2)
* A sequence of data packets: H l
1
X = {X(l), )((2)7 o ,X(n)} 0] " —pp| Time-series >
. . 1 rormal Anomaly Detector normal
* Asingle packet with m features- El l
O ¢ \ ~[o}./
{CU y L 7w$n)} ANVET 2NN X
. Nwn - X anomaly
* Asignature of a packet: 17 snomaly detected
(t) (t) (t) (t) _ detected
s(x) = gler”, ¢ ¢y )

* Assign a unique value to each different combination of original features.

Feature Discretization
* Find optimal granularity of discretization (too coarse --> high FN; too fine --> high
FP) l
argmax Zwmi, err, < 6

n1,MN2,...,1

i=1
n1i,...,n; —the number of discretized values; err, — validation error/ FP rate
w1, ..., w; — relative importance of a feature; 0 — acceptable FP rate

* Find the finest-grained discretization whose FP rate is below the acceptable FP.



Package Level Detection by Bloom Filters

Bloom-filter (BF) Anomaly Detector

Bloom Filter
Detector

i+— (t—2
clt=1 =2

BF is a light-weight data structure; test if an
element is a member of a set.

Time-series
Anomaly Detector

i normal

X

anomaly
detected

Insert all the normal packet signatures into
the BF detector

anomaly
detected

FREEElT]

Hash functions map each element to the
corresponding positions of a bit vector.

Lookup an element by hashing it by the same functions, and

. - t
0 otherwise

e x(*) is classified as anomaly if F,(x®)) = 1,

e otherwise the package passed our package level anomaly detector.



Time-series Level Detection by LSTM
Long Short-Term Memory (LSTM )

* Advanced anomalies can only be detected by
. . Bloom Filter
observing preceding packets. Detector

_>sz/

normall

anomaly

anomaly detected

detected

* Recurrent neutral network (RNN) specialise in ] [, e,
sequence learning to predict time series. 1] v
« Memorize/back-propagate through time for training. % An;gfys;:tzsmr
* |dentify anomalies with long time lags in between. sx®) 1
B 5
1]

A Memory Cell in LSTM

(ht—hxt) (ht—bXt)

YR

In;;ut Gate |i; (o Outpult Gate Time Series Learning of LSTM
|

Output @ ?
[—>_A = A

v
v

T
orget Gate | f: . -
\_F__g_t_(i;C‘T’b\_ _______ 2 Q(TD (%) é) Qg

v
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Stacked LSTM Anomaly Detector

Time-series Level Detection by LSTM

t—1 t—2
Store the normal signature database into the LSTM [C( )a c! )a e ]
detector l

Input previous network packets (in discretized

representation) LSTM Layer [*—

Output the predicted probability of each signature of \/
next packet :
zZi .
Pr(s; | ¢V, ct=2 . )= —  wvie{1,2,...,|S]} |
Z|S| ezk
S|
ZPr(s- |t =2 ) =1. LSTM Layer
S
The top kth most probable signatures are used to 'Z S R' |

classify:
: (t) k) Softmax Activation Layer
Fy(x® [ 7D el ) = {1 if s(x*) ¢ 5

0 otherwise. / i ... \

Optimal choice of k; similar as granularity of el e*? e”IS|
discretization. S| S| —I|S| ..

Z; A zZ;
Add probabilistic noise in training to weaken overfitting. Zi— € Zi:l e Z c



Experiments — Training & Validation

Training & Validation

* Split dataset: 60% training + 20% validation + 20% testing
* Discretization of continuous features by k-means and the validation error.

No. of discretized values vs. validation error

N}
5}

PID parameters

* A stacked two layer LSTM; each layer has 256 memory units; output 613

signatures.

0.054

0.048

10.042

0.036

40.030

40.024

0.018

0.012

0.006

Feature Discretization method | Value No.
time interval Kmeans clustering 2+1
crc rate Kmeans clustering 241
pressure measurement Even interval partition 20+1
setpoint Even interval partition 1041
PID parameters Kmeans clustering 3241
025 . top-k error .
= = training with no noise
4 a validation with no noise
0.20| ¢ ¢ training with probabilistic noise ||
e e validation with probabilistic noise
L]
o
] 0.15
© .
—
o
£ 010
(0] [ ]
4 .
0.05 . .
H ° : 3
LT T
8
0.00 . L : ‘
1 2 4 5 6 7 8 9
k

* Train the LSTM with/without noise for 50 training epochs.

* Error ratio converges quickly to 0.

* Similar top-k (after k>3) error for models with/without noise.




Precision, Recall, Accuracy and ...

* Precision is the fraction of positive elements that
are true positives.

* Recall: is the fraction of relevant (false negative)
elements that are classified as true positives.

* Accuracy is the fraction of the whole sample that is
correctly classified as either a true positive or a true
negative.



.. F1

* F-measure combines precision and recall. The most
common measure is the F1-measure which is

computed as:
2 X precision x recall
precision + recall

* which can be interpreted as a weighted average.



Experiments — Comparison

Attack Type Model Detected Ratio
Our model 0.88
BF 0.77
BN 0.77
. . . NMRI SVDD .
Comparison with Other Anomaly Detection Methods s 013
0.31
PCA-SVD 0.45
Our model 0.67
. . . . BF 0.53
* Evaluation metrics — Precision, Recall, Accuracy and F-score. om | B 053
VDD 0.02
IF 0.08
GMM 0.33
e Compare with other anomaly detection methods. coasve o
| E] e
SVDD 0.19
* Detected ratio (recall) for seven types of attacks. S oo
PCA-SVD 0.62
Our model 0.80
BF 0.49
MPCI S\I?gD g;é
IF 0.08
GMM 0.64
PCA-SVD 0.66
Our model .00
Model Precision | Recall | Accuracy | F-score BF 100
BN 1.00
Our model 0.94 0.78 0.92 0.85 MFCT SVDD 1.00
IF 0.00
BF 0.97 0.59 0.87 0.73 GMM 0.32
A-S .5
BN 0.97 0.59 0.87 0.73 B E—
SVDD 0.95 0.21 0.76 0.34 o BN 003
IF 0.51 0.13 0.70 0.20 T o1
GMM 0.79 0.44 0.45 0.59 o 015
PCA-SVD 0.65 0.28 0.17 0.27 OuanFmdel 138
Rec BN 1.00
econ. SVDD 1.00
IF 0.12
GMM 0.72
PCA-SVD 0.54




Evasion Attacks

Originally discovered by researchers when trying to
better interpret neural networks.

Schoolbus Perturbation Ostrich

Szegedy, Christian, et al. "Intriguing properties of neural networks." (2013).



Stealthy Attacks (Cheng, Li and Chana)

Objectives

» A framework for conducting stealthy attacks with minimal knowledge of the target
ICS

» Better understanding of the limitations of current detection mechanisms, and the
real threat posed by stealthy attacks to ICS.

Main Contributions

» Demonstrated attacks can be automatically achieved by intercepting the
sensor/control signals for a period of time using a particularly designed real-time
learning method.

» Used adversarial training technique — Wasserstein GAN to generate false data that
can successfully bypass the IDS and still deliver specific attack goals.

» Two real-world datasets are used to validate the effectiveness of our framework.
» A gas pipeline SCADA system.
» Secure Water treatment testbed from iTrust@SUTD.



Stealthy Attacks against ICS

Master Control Station

Master Control Station

SUPERVISION ADS ADS /7
J A [ ;’
y A
HMI HMI HMI
CONTROL | ] Y
mEEn
A J
| PLCIRTU PLC/RTU
BY]
S %)
= - - g
FIELD S e @
@ IS
)
o 8
Sensor Actuator Sensor Actuator | === | Sensor Actuator

» Intercept the expected behaviours of the system via compromised

channels.

Monitoring
signals

» Injected malicious sensor reading at each time step to achieve certain

attack goals.

» Attackers attempt to hide their manipulation; remain undetected by ADS.



Anomaly Detection for Industrial Processes

Anomaly Detection Mechanism for Securing Industrial Processes

» Protect from physical faults and cyber attacks by monitoring the sensor reading & control commands.
» Rely on a Predictive Model which predicts the next sensor measurements based on previous signals.

Observed: X(t) = {y(t)a u(t)} - {yy)v ygt)a S 7(’)2)7 ugt)a ugt)a S 7u7(1t)}
predicted: §*) = {Q%t), Qgt), I

Existing Predictive Models

> Auto-Regressive (AR) model () b (- ) _
= Fit a linear regression model for each reading Y. = Z a;Y +ap Vie{l,2,...,m}
based on its p previous readings. Jj=1

» Linear Dynamic State-space (LDS) model

= Avector w for physical states w®) = Awl D 4L Byut-1 4 (t-1)
* Matrices for system dynamics. NOE (t) (t) (t)
= Noise vectors. y = Cw'/+Du’ +e
= Known as the State Estimator
» Long Short-Term Memory (LSTM) [HASE’17] 7 ; 1
= State-of-the-art prediction accuracy h() = f(X( )7 h! ))
= hidden vector computed iteratively vt = Wyh(t—l) +b,

= Weight matrix and bias vector



Anomaly Detection for Industrial Processes

Detection Methods
» An anomalous signal is detected when the residual error between the predicted and observed:

9 — P> vie{1,2,...,m}

I5* =y > 7

» Use the history of residual errors to detect collective anomalies, by Cumulative Sum (CUSUM) based
on an accumulated statistic:

HY = max(0, H&Y 470 —py—w) > 7

Formally Define Stealthy Attacks
» A general anomaly detector as a function:

Fly® | Xi-1) = {1 if y(® t.riggers an alarm
0 otherwise
» Consider the ADS is a black-box for attackers.
» A certain number of PLC-sensor and PLC-actuator channels ygware
compromised.
» Define a set of stealthy attack goals -- inject malicious values that are deviant
with the true values

ﬂét)@vg where @ € {>, <, <, >, =} /\yjéﬂ € ngt)



Deep Learning Framework for Stealthy Attacks

WGAN-based Training Model for Stealthy Attacks
» Reconnaissance phase + Attacking phase

» A Wasserstein Generative Adversarial Net (W-GAN) is constructed for training

» W-GAN: an iterative game between two players (Generator and Discriminator)
= Generator: generates data with the same distribution as the training data
= Discriminator: distinguish generated data from training data
= At each step, either G or D is trained to optimize its objective function.
= Until Discriminator fails...

True / False
data up tot-1

True data i
up to t-1 >

up to t-1 True D ——» Anomalous?




Deep Learning Framework for Stealthy Attacks

Malicious Measurement Generator

» Generate malicious data achieving attack goals.
» As a sequence learning problem, solved by LSTM-FNN.

> Two sliding windows: G
T e ()
» Generator as an overall function:
vy = G(St, St 00)
» Minimize the chance being detected and deliver the goal:

argmm |T] Z}" (S!,SL;00) | XY

subject to ygt) @v, Vgeg,teT

igt—l) igtle)

Ll ~ Ll ~
(t=1) (t—1+1)

S s|h
T h i
M M
L L
S h(t—l) s h¢—+1D
T b
M M

x((:t—l) th—l-i-l

1 (t—2
b

t—2
.. b |

Substitute Anomaly Detector

» Approximate the black-box anomaly detector.
» Input the window of previous data and the current data;

Output the classification. 7= D(y,St;0p) D
» Detector as an overall function:
1

(t) t. - t) &t.
argmm |T| Z ,Se; @D) |T2|tz D( S @D)

? €Ty
» Larger values for malicious; smaller values for true data.

GAN: Generator + Detector

» Generating malicious data which makes the detector output smallest possible values whilst

achieving the goals.




GAS Pipeline Case Study

Description

Mississippi Dataset of a gas pipeline SCADA Features
. . . . . Setpoint

> Controls the air pressure in a pipeline; contains a s

Gain

PLC, a sensor and several actuators. o

eset rate
Deadband
» Pressure measurements at every 2s, 68,803 time Cycle time

series signals are collected.

Experiment Setup

Rate
System mode

Control scheme

The pressure set point

PID gain

PID reset rate

PID dead band

PID cycle time

PID rate

Automatic(2), manual (1) or off (0)

Pump (0) or valve (1)

Pump Open(1) or off (0) — for manual mode
Valve Open(1) or off (0) — for manual mode
> Baseline Anomaly Detector uses LSTM model Pressure measurement Pressure measurement
» Four Attack Scenarios: being 4 or 8 units smaller
than real values; different compromised channels
Attack Goal

g;t) = max(y;t) - 4,0)

g;t) - max(y(gt) - 8,0)

Attacker’s
Abilities

PLC-Sensor
channel
Compromised

Attack Scenario 1

Attack Scenario 2

All channels
Compromised

Attack Scenario 3

Attack Scenario 4




GAS Pipeline Case Study

Results and Evaluation

» Generated malicious measurements successfully capture the trend of the real trace.

» Generated malicious measurements mostly can bypass the anomaly detector
» Most malicious values have similar or less residual error than the true values.
» Outliers are caused by HMI human input at manual mode.

> Ratio of attack goal achieved the detection ratio of malicious measurements
» lgnored the outliers (residual error > 0.05)
» Less detection ratio for attack scenario 3 and 4.
» Only compromising PLC-sensor channel still generates high-quality attacks.

Attack Ratio of Detected ratio
Scenario | goal achieved | by residual error | by CUSUM
1 88.1% 2.6% 0.2%

2 86.0% 2.4% 0.1%
3 85.9% 1.1% 0.01%
4 90.5% 1.2% 0.01%
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Water Treatment System Case Study

Experiment Setup

» A water treatment plant (SWaT from iTrust@SUTD) maintains the water quality within acceptable limits.
» 51 sensors extracted every second, in total 496,800 signals for normal operation are collected.

Features Description
AIT201 Measures NaCl level
AlT202 Measures HCl level
AIT203 Measures NaOCl level
FIT201 Flow transmitter for dosing pumps
P101 Raw water tank pump state
Mv201 Motorized vale state
P201 NaCl dosing pump state
P203 HCI dosing pump state
P205 NaOCl dosing pump state

» Focus on generating malicious HCl and NaOCI measurements, still within normal range.
~ t . t - t - t
y§1> > mm(yél) + 0.1, 1) yg; < maX(yéQ) _ 0.1’ 0)

Simulation and Evaluation

» A successful attack -- either the HCI (>0.99) or the NaOCI (<0.01) dosing pump is turned on
unexpectedly by the injected malicious measurements + bypassed the detector.

Compromised Successful Ratio
Channels by residual error | by CUSUM
Only PLC-AIT202, PLC-AIT203 90.1% 93.8%
all channels 92.4% 94.6%




Future work

» Proposed a novel GAN based stealthy attack framework, required a much lower
a-priori knowledge of the targeted ICS.

» Developed a real-time adversarial learning method allowing attackers to inject
malicious data to automatically conduct stealthy attacks without being detected.

» Indicated that with recent development in deep learning, the widely recognized
effectiveness of existing anomaly detection techniques might be overestimated.

» More advanced anomaly detection frameworks are needed.
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