
Some Research Topics
Chris Hankin

Outline

• Context – RITICS and KIOS
• Some Contributions

• Monitoring
• Measuring
• Diversifying
• Defending

• The Broader Network

Key Questions / Challenges for RITICS Phase 1
(2014-2018)

Do we understand the harm threats pose to
our ICS systems and business?

Can we confidently articulate these threats
as business risk?

What could be novel effective and efficient
interventions?

RITICS Phase 1 Projects

• RITICS (Hankin, Chana, Imperial
College London)

• MUMBA (Rashid, Lancaster/Bristol)
• CEDRICS (Bloomfield, Popov, City)
• SCEPTICS (Easton, Chothia,

Birmingham)
• CAPRICA (Sezer, Queen’s University

Belfast)

Impact of Phase 1

v Creation of a new research community
v Contribution to new Cyber Security Strategy for UK railways.
v Tools for building models of complex cyber physical

systems.
v Testbeds.
v A serious game for studying security decisions.
v Secure implementation of gateway module compatible with

IEC and IEEE standards.
v Contribution to European work on certification of ICS

components.

RITICS Phase 2

Harm

Risk

Protect

Economics

Barriers

Response

IIoT ICS

BIM
CNI

The RITICS Programme

NIS Directive –
baseline,

barriers, impact
Safety and

Security
Autonomous

Systems

Incident
Response and

Forensics
Cyber Controls Interconnected

Systems

Supply Chain

NIS Directive

How many shades of NIS: Understanding
Organisational Cybersecurity and Sectoral
Differences - Bristol

Effective Solutions for the NIS Directive:
Supply Chain Requirements for Third
Party Devices - Birmingham

Establishing a Scientific Baseline for
Measuring the Impact of the NIS Directive
on Supply Chain Resilience - Glasgow

Second Call

AIR4ICS: Agile Incident Response For Industrial Control
Systems – DMU

Cloud-enabled Operation, Security Monitoring, and
Forensics (COSMIC) – QUB

Developing Pedagogy to Optimise Forensic Training in
Safety-Related Industrial Control Systems (ICS) –
Glasgow

Interconnected safe and secure systems (IS3) - City

Third Call

Diversity-by-design: Quantifying vulnerability similarity
of Interconnected Networks - Cardiff

Emergence of cybersecurity capability across
interdependent critical infrastructure, from the nexus
of business, engineering and public policy interests –
Glasgow/Belfast

NDN for Secure Industrial IoT Networking - Belfast

Three contributions:

• Measuring Cyber-physical security

• Software Diversity

• AI and Intrusion Detection

Security Metrics

With Martín Barrère, Demetrios Eliades,
Nicolas Nicolaou and Thomas Parisini

www.kios.ucy.ac.cy

Agenda

1. Introduction

2. Base security metric (weighted AND/OR graphs)

3. Extended security metric (AND/OR hypergraphs)

4. Analytical evaluation

5. Case study on water transport networks

6. Conclusion and future work

www.kios.ucy.ac.cy

Introduction

§ Goal: security metric for ICS networks

§ AND/OR graphs to model complex interdependencies
between cyber-physical components

§ Identify critical ICS nodes, with minimal compromise
cost, that could disrupt the operation of the system
§ NP-complete problem
§ Multiple overlapping security measures

§ Measure security levels, compare different ICS settings

www.kios.ucy.ac.cy

ICS network model (simple example)

§ AND/OR graph with sensors, software agents and actuators
§ Adversarial model: an attacker can compromise any network node

at a certain cost with
§ Compromised node: component unable to operate properly

ICS network modelling (simple example)

Figure: AND/OR graph with sensors, software agents and actuators

Adversarial model: an attacker can compromise any network node
n 2 VAT at a certain cost '(n), with ' : VAT ! R�0.

Compromised node ! CPS component unable to operate properly

ICS network modelling (simple example)

Figure: AND/OR graph with sensors, software agents and actuators

Adversarial model: an attacker can compromise any network node
n 2 VAT at a certain cost '(n), with ' : VAT ! R�0.

Compromised node ! CPS component unable to operate properly

ICS network modelling (simple example)

Figure: AND/OR graph with sensors, software agents and actuators

Adversarial model: an attacker can compromise any network node
n 2 VAT at a certain cost '(n), with ' : VAT ! R�0.

Compromised node ! CPS component unable to operate properly

www.kios.ucy.ac.cy

Least-effort attack strategy (critical nodes)

§ Problem: identifying critical nodes in AND/OR graphs => NP-complete
(Desmedt et al. (2004); Jakimoski et al. (2004); Souza et al. (2013))

§ Objective: set of nodes, with minimal cost (effort) for an attacker,
such that if compromised, the system would enter into a non-
operational state

§ Solution:
o Critical nodes: a, c
o Total cost: 4

www.kios.ucy.ac.cy

MAX-SAT resolution approach

1. AND/OR logical transformation:

2. Attacker’s objective:

3. MAX-SAT problem specification:
§ Falsification penalty scores

§ MAX-SAT solution: minimises the penalty induced by falsified
weighted variables

Analysing Mission-Critical CPS Components

with Weighted AND/OR Graphs and MaxSAT:

A Case Study on Complex Aircraft Systems
?

Mart́ın Barrère and Chris Hankin

Institute for Security Science and Technology
Imperial College London, UK

{m.barrere, c.hankin}@imperial.ac.uk

Abstract. ...

1 Introduction

Cyber-Physical Systems (CPS) usually involve complex networks of intercon-
nected software and hardware components that are logically combined to achieve
a common goal or mission, for example, keeping a plane on the air or providing
energy to a city. Therefore, understanding which are the most likely points of
failure in CPS environments is essential to ensure reliability. AND/OR graphs
are particularly suitable to represent this type of networks since they allow to
grasp intricate logical dependencies among CPS components. However, the gen-
eral problem of identifying critical nodes in AND/OR graphs, i.e. a minimal
vertex cut, is an NP-complete problem [5, 6, 8, 9]. In this paper, we address the
problem of identifying the minimal set of critical CPS components that is most
likely to fail and prevent the global system from delivering the mission it was
built for. That is, a critical node set X whose removal will disconnect the target
from its dependencies and whose likelihood of failure is maximum among all
critical node sets.

We present a novel approach based on maximum satisfiability (MAX-SAT)
techniques that, given a list of independent failure probabilities for each CPS
component, indicates the set of critical components whose joint probability of
failure is maximum among all critical node sets and that, if removed, would
disconnect the target node from a non-empty set of CPS dependencies.

fG(c1) = c1 ^ (d ^ ((a ^ b) _ (b ^ c)))

¬fG(c1) = ¬(c1 ^ (d ^ ((a ^ b) _ (b ^ c))))

CNF (¬fG(t)) = (¬c1 _ ¬d _ ¬a _ ¬b) ^ (¬c1 _ ¬d _ ¬b _ ¬c)

? This work has been supported by the European Union’s Horizon 2020 research and
innovation programme under grant No 739551 (KIOS CoE).

Analysing Mission-Critical CPS Components

with Weighted AND/OR Graphs and MaxSAT:

A Case Study on Complex Aircraft Systems
?

Mart́ın Barrère and Chris Hankin

Institute for Security Science and Technology
Imperial College London, UK

{m.barrere, c.hankin}@imperial.ac.uk

Abstract. ...

1 Introduction

Cyber-Physical Systems (CPS) usually involve complex networks of intercon-
nected software and hardware components that are logically combined to achieve
a common goal or mission, for example, keeping a plane on the air or providing
energy to a city. Therefore, understanding which are the most likely points of
failure in CPS environments is essential to ensure reliability. AND/OR graphs
are particularly suitable to represent this type of networks since they allow to
grasp intricate logical dependencies among CPS components. However, the gen-
eral problem of identifying critical nodes in AND/OR graphs, i.e. a minimal
vertex cut, is an NP-complete problem [5, 6, 8, 9]. In this paper, we address the
problem of identifying the minimal set of critical CPS components that is most
likely to fail and prevent the global system from delivering the mission it was
built for. That is, a critical node set X whose removal will disconnect the target
from its dependencies and whose likelihood of failure is maximum among all
critical node sets.

We present a novel approach based on maximum satisfiability (MAX-SAT)
techniques that, given a list of independent failure probabilities for each CPS
component, indicates the set of critical components whose joint probability of
failure is maximum among all critical node sets and that, if removed, would
disconnect the target node from a non-empty set of CPS dependencies.

fG(c1) = c1 ^ (d ^ ((a ^ b) _ (b ^ c)))

¬fG(c1) = ¬(c1 ^ (d ^ ((a ^ b) _ (b ^ c))))

CNF (¬fG(t)) = (¬c1 _ ¬d _ ¬a _ ¬b) ^ (¬c1 _ ¬d _ ¬b _ ¬c)

? This work has been supported by the European Union’s Horizon 2020 research and
innovation programme under grant No 739551 (KIOS CoE).

MAX-SAT problem: find a truth assignment that maximises
the weight of the satisfied clauses (or minimise the weight of
falsified clauses)

It is important to note that if we assign the same unit cost to
every node (i.e. '(v) = 1, 8v 2 VAT), the metric will indicate
the minimum number of nodes that must be compromised in
order to bring down the system. Alike, though from a fault-
diagnosis perspective, the metric will determine the minimum
amount of components that must concurrently fail in order to
make the system non-operational.

From a graph-theoretical perspective, our security metric
looks for a minimal weighted vertex cut in AND/OR graphs.
As mentioned in Section II, this is an NP-complete problem
[13], [14], [16], [17]. However, a proper transformation of the
problem can leverage advanced mechanisms from other fields
and take advantage of very efficient techniques for this sort of
problem. In this paper, we address our problem from a logical
perspective, and more precisely, from a satisfiability point of
view.

B. Metric resolution approach via graph transformation
Given a target node t, the input graph G can be used as a

map to decode the dependencies that node t relies on. Since
these dependencies are presented as a logical combination
of components connected with AND and OR operators, we
say that node t is fulfilled (or can operate normally) if the
logical combination is satisfied. In turn, these dependencies
may also have previous dependencies, and therefore, they must
be also satisfied. In that sense, G can be traversed backwards
in order to produce a propositional formula that represents the
different ways in which node t can be fulfilled. We call this
transformation fG(t). To illustrate this idea, let us consider
the previous example scenario (presented in Section III). In
this case, fG(c1) returns the following formula:

c1 ^ (d ^ ((a ^ b) _ (b ^ c)))

The goal of the attacker, however, is precisely the opposite,
i.e., to disrupt node t somewhere along the graph. There-
fore, we are actually interested in satisfying ¬fG(t), which
describes the means to disable t, as follows:

¬(c1 ^ (d ^ ((a ^ b) _ (b ^ c))))

Under that perspective, a logical assignment such that
¬fG(t) = true will indicate which nodes must be compro-
mised (i.e. logically falsified) in order to disrupt the operation
of the system. Finding such an assignment constitutes a Satis-
fiability (SAT) problem [34]. A SAT problem essentially looks
for an assignment of truth values to the variables of a logical
formula such that the formula evaluates to true. Normally,
SAT formulations consider the input formula in conjunctive
normal form (CNF). Converting an arbitrary boolean formula
to CNF can be naively tackled by using De Morgan and
distributive laws, which leads to the following formula:

(¬c1 _ ¬d _ ¬a _ ¬b) ^ (¬c1 _ ¬d _ ¬b _ ¬c)

However, such an approach might lead to exponential com-
putation times over large graphs, thus only being able to scale
up to a few hundred nodes. To avoid this issue, we use the
Tseitin transformation [12], which essentially produces a new
formula in CNF that is not strictly equivalent to the original

formula (because there are new variables) but is equisatisfiable.
This means that, given an assignment of truth values, the new
formula is satisfied if and only if the original formula is also
satisfied. An example of how the Tseitin transformation works
can be found in Appendix A. Since the Tseitin transformation
adds new variables during the process, the new formula is
larger in size than the original one (we omit the transformed
formula for our example since it has 15 variables and 27
clauses). However, the Tseitin transformation can be done in
polynomial time, as opposed to the naive CNF conversion
approach that can ramp up to exponential computation times
in the worst case.

C. Satisfiability formulation
When a CNF formula also involves weights on each clause,

the problem is called MAX-SAT [20]. A MAX-SAT prob-
lem consists in finding a truth assignment that maximises
the weight of the satisfied clauses. Equivalently, MAX-SAT
minimises the weight of the clauses it falsifies [20]. When a
set of clauses must be forcibly satisfied (called hard clauses),
the problem is denominated Partial MAX-SAT and it works
on a subset of clauses (denominated soft clauses) that can
be falsified if necessary. If the soft clauses have non-unit
weights, the problem is called Weighted Partial MAX-SAT
and it will try to minimise the penalty induced by falsified
weighted variables. We use the latter to address our problem.
Reconsidering our example scenario, the hard clauses are those
involved in the CNF formula as follows:

¬c1 _ ¬d _ ¬a _ ¬b
¬c1 _ ¬d _ ¬b _ ¬c

whereas soft clauses correspond to each atomic node in the
graph with their corresponding penalties (costs) as follows:

a b c d c1

'(a) = 2 '(b) = 5 '(c) = 2 '(d) = 10 '(c1) = inf

Therefore, a MAX-SAT solver will try to minimise the
number of falsified variables as well as their weights, which in
our problem equals to minimise the compromise cost for the
attacker. As shown in Section VII, current SAT solvers are able
to handle this family of problems at a very decent large scale
(dozens of thousands of variables), and they usually involve
state-of-the-art techniques to tackle satisfiability problems,
pseudo-boolean problems and optimisation procedures [35].
The following section details our strategy to compute the
security metric.

V. COMPUTATION STRATEGY

A. Logical transformation
Given a directed AND/OR graph G = (V,E) and a target

node t 2 VAT , we first produce a propositional formula that
represents the logical semantics of G with regards to t, i.e.
the logical conditions that must be satisfied to fulfil t. We
denote this transformation as fG(t), which is described in
Algorithm 2. The formulation process starts at t and traverses
G backwards, expanding logical conditions as needed, until
nodes with no incoming edges are reached.

5

www.kios.ucy.ac.cy

Visualisation system (META4ICS)

§ META4ICS: Metric Analyser for Industrial Control Systems
Available at: https://github.com/mbarrere/meta4ics

https://github.com/mbarrere/meta4ics

www.kios.ucy.ac.cy

Multiple overlapping security measures

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

µ(G, t), is to identify the set of nodes X =
{x1, . . . , xh} that must be compromised in order to
disrupt the normal operation of target node t, with
minimal cost for the attacker. More formally, µ : G ⇥
V ! 2V is defined as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

where the solution with minimal cost must be either
node t or a set of nodes X such that, if removed
(with function �), t gets disconnected from the
graph. Function �(G,X) removes from G each
node x 2 X and the nodes that depend on them
following a logic-style propagation, as explained
in Barrère et al. (2019). The result is then analysed
with function wcc(G), which computes the number
of weakly connected components in G, that is,
the number of connected components when the
orientation of edges in G is ignored. In other words,
the restriction on wcc(G) ensures that the target
node t is disconnected from a non-empty set of
nodes on which t depends (directly or indirectly) to
function properly.

3. USING MULTIPLE OVERLAPPING SECURITY
MEASURES

While quite useful, the original metric is only able
to capture cyber-physical security measures that are
applied independently to each ICS component. That
is, it can capture that sensors a and c are protected,
for example, by fenced areas (each one with cost 3),
but it cannot model that both sensors are protected
by one single fenced area with cost 3. In other
words, the metric assumes that these two fenced
areas are different, and thus compromising one of
them does not affect the other. In mathematical
terms, this means that the costs for the attacker are
completely independent. Nevertheless, if the fenced
area is the same for both sensors, then the attacker’s
effort (cost) required to compromise the security
mechanism must be considered only once. Let us
consider a second example, illustrated in Figure 2.

This second scenario describes a more general
problem where many security measures, as those
exemplified in Table 1, can be jointly applied to
protect multiple ICS components simultaneously.

Measure Cost (attacker) Description
M1 2 Sound alarm
M2 3 Fenced area
M3 7 Locked container
M4 12 Tamper-resistant container
M5 inf Alarmed locked building

Table 1: Protection measures

Figure 2: Case 2 - Multiple overlapping measures

In particular, each ICS component is protected by
one or more security measure instances sj of type
Mi, as described in Table 2. We define S =
{s1, s2, . . .} as the set of involved security measure
instances. We call protection range to the set of ICS
components protected by a single instance sj .

Measure instance s1 s2 s3 s4 s5

Measure type M2 M3 M1 M4 M5

Attacker’s cost (sj) 3 7 2 12 inf

Protection range {a, c} {b} {a} {d} {c1}

Table 2: Security measures for Case 2

Each measure Mi involves a cost for the attacker that
quantifies the effort that he or she has to make in
order to bypass the measure. We model this aspect
for measure instances as a function : S ! R�0.

In the second scenario, sensors a and c are
protected by the same security measure instance
s1 (fenced area). Therefore, the cost of bypassing
s1 to compromise sensor a, sensor c, or both, is 3.
However, sensor a is also protected by the security
measure s3 (sound alarm). As a consequence,
compromising sensor a would imply to bypass both
protective measures s1 and s3. Therefore, the best
strategy in this case is to compromise the security
measures s1 and s3, involving the critical nodes a

and c, with a total cost of 3 + 2 = 5. Note that the
original metric would have counted 3+2 for sensor a
and 3 for sensor c, totalling a cost of 8.

In the next section, we formalise an hypergraph-
based extension to the base metric described in
Section 2 that allows to capture multiple security
measures applied to various ICS components in
overlapping manners.

4. EXTENDED SECURITY METRIC

4.1. Mathematical reformulation

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

 (sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(2)

3

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

µ(G, t), is to identify the set of nodes X =
{x1, . . . , xh} that must be compromised in order to
disrupt the normal operation of target node t, with
minimal cost for the attacker. More formally, µ : G ⇥
V ! 2V is defined as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

where the solution with minimal cost must be either
node t or a set of nodes X such that, if removed
(with function �), t gets disconnected from the
graph. Function �(G,X) removes from G each
node x 2 X and the nodes that depend on them
following a logic-style propagation, as explained
in Barrère et al. (2019). The result is then analysed
with function wcc(G), which computes the number
of weakly connected components in G, that is,
the number of connected components when the
orientation of edges in G is ignored. In other words,
the restriction on wcc(G) ensures that the target
node t is disconnected from a non-empty set of
nodes on which t depends (directly or indirectly) to
function properly.

3. USING MULTIPLE OVERLAPPING SECURITY
MEASURES

While quite useful, the original metric is only able
to capture cyber-physical security measures that are
applied independently to each ICS component. That
is, it can capture that sensors a and c are protected,
for example, by fenced areas (each one with cost 3),
but it cannot model that both sensors are protected
by one single fenced area with cost 3. In other
words, the metric assumes that these two fenced
areas are different, and thus compromising one of
them does not affect the other. In mathematical
terms, this means that the costs for the attacker are
completely independent. Nevertheless, if the fenced
area is the same for both sensors, then the attacker’s
effort (cost) required to compromise the security
mechanism must be considered only once. Let us
consider a second example, illustrated in Figure 2.

This second scenario describes a more general
problem where many security measures, as those
exemplified in Table 1, can be jointly applied to
protect multiple ICS components simultaneously.

Measure Cost (attacker) Description
M1 2 Sound alarm
M2 3 Fenced area
M3 7 Locked container
M4 12 Tamper-resistant container
M5 inf Alarmed locked building

Table 1: Protection measures

Figure 2: Case 2 - Multiple overlapping measures

In particular, each ICS component is protected by
one or more security measure instances sj of type
Mi, as described in Table 2. We define S =
{s1, s2, . . .} as the set of involved security measure
instances. We call protection range to the set of ICS
components protected by a single instance sj .

Measure instance s1 s2 s3 s4 s5

Measure type M2 M3 M1 M4 M5

Attacker’s cost (sj) 3 7 2 12 inf

Protection range {a, c} {b} {a} {d} {c1}

Table 2: Security measures for Case 2

Each measure Mi involves a cost for the attacker that
quantifies the effort that he or she has to make in
order to bypass the measure. We model this aspect
for measure instances as a function : S ! R�0.

In the second scenario, sensors a and c are
protected by the same security measure instance
s1 (fenced area). Therefore, the cost of bypassing
s1 to compromise sensor a, sensor c, or both, is 3.
However, sensor a is also protected by the security
measure s3 (sound alarm). As a consequence,
compromising sensor a would imply to bypass both
protective measures s1 and s3. Therefore, the best
strategy in this case is to compromise the security
measures s1 and s3, involving the critical nodes a

and c, with a total cost of 3 + 2 = 5. Note that the
original metric would have counted 3+2 for sensor a
and 3 for sensor c, totalling a cost of 8.

In the next section, we formalise an hypergraph-
based extension to the base metric described in
Section 2 that allows to capture multiple security
measures applied to various ICS components in
overlapping manners.

4. EXTENDED SECURITY METRIC

4.1. Mathematical reformulation

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

 (sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(2)

3

Analysing Mission-Critical CPS Components

with Weighted AND/OR Graphs and MaxSAT:

A Case Study on Complex Aircraft Systems
?

Mart́ın Barrère and Chris Hankin

Institute for Security Science and Technology
Imperial College London, UK

{m.barrere, c.hankin}@imperial.ac.uk

Abstract. ...

1 Introduction

Cyber-Physical Systems (CPS) usually involve complex networks of intercon-
nected software and hardware components that are logically combined to achieve
a common goal or mission, for example, keeping a plane on the air or providing
energy to a city. Therefore, understanding which are the most likely points of
failure in CPS environments is essential to ensure reliability. AND/OR graphs
are particularly suitable to represent this type of networks since they allow to
grasp intricate logical dependencies among CPS components. However, the gen-
eral problem of identifying critical nodes in AND/OR graphs, i.e. a minimal
vertex cut, is an NP-complete problem [5, 6, 8, 9]. In this paper, we address the
problem of identifying the minimal set of critical CPS components that is most
likely to fail and prevent the global system from delivering the mission it was
built for. That is, a critical node set X whose removal will disconnect the target
from its dependencies and whose likelihood of failure is maximum among all
critical node sets.

We present a novel approach based on maximum satisfiability (MAX-SAT)
techniques that, given a list of independent failure probabilities for each CPS
component, indicates the set of critical components whose joint probability of
failure is maximum among all critical node sets and that, if removed, would
disconnect the target node from a non-empty set of CPS dependencies.

fG(c1) = c1 ^ (d ^ ((a ^ b) _ (b ^ c)))

¬fG(c1) = ¬(c1 ^ (d ^ ((a ^ b) _ (b ^ c))))

CNF (¬fG(c1)) = (¬c1 _ ¬d _ ¬a _ ¬b) ^ (¬c1 _ ¬d _ ¬b _ ¬c)

In particular, each ICS component is protected by one or more security measure
instances sj of type Mi, as described in Table ??. We define S = {s1, s2, . . .} as

? This work has been supported by the European Union’s Horizon 2020 research and
innovation programme under grant No 739551 (KIOS CoE).

§ Set of security measure instances:
§ Cost function (attacker’s effort):

www.kios.ucy.ac.cy

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

µ(G, t), is to identify the set of nodes X =
{x1, . . . , xh} that must be compromised in order to
disrupt the normal operation of target node t, with
minimal cost for the attacker. More formally, µ : G ⇥
V ! 2V is defined as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

where the solution with minimal cost must be either
node t or a set of nodes X such that, if removed
(with function �), t gets disconnected from the
graph. Function �(G,X) removes from G each
node x 2 X and the nodes that depend on them
following a logic-style propagation, as explained
in Barrère et al. (2019). The result is then analysed
with function wcc(G), which computes the number
of weakly connected components in G, that is,
the number of connected components when the
orientation of edges in G is ignored. In other words,
the restriction on wcc(G) ensures that the target
node t is disconnected from a non-empty set of
nodes on which t depends (directly or indirectly) to
function properly.

3. USING MULTIPLE OVERLAPPING SECURITY
MEASURES

While quite useful, the original metric is only able
to capture cyber-physical security measures that are
applied independently to each ICS component. That
is, it can capture that sensors a and c are protected,
for example, by fenced areas (each one with cost 3),
but it cannot model that both sensors are protected
by one single fenced area with cost 3. In other
words, the metric assumes that these two fenced
areas are different, and thus compromising one of
them does not affect the other. In mathematical
terms, this means that the costs for the attacker are
completely independent. Nevertheless, if the fenced
area is the same for both sensors, then the attacker’s
effort (cost) required to compromise the security
mechanism must be considered only once. Let us
consider a second example, illustrated in Figure 2.

This second scenario describes a more general
problem where many security measures, as those
exemplified in Table 1, can be jointly applied to
protect multiple ICS components simultaneously.

Measure Cost (attacker) Description
M1 2 Sound alarm
M2 3 Fenced area
M3 7 Locked container
M4 12 Tamper-resistant container
M5 inf Alarmed locked building

Table 1: Protection measures

Figure 2: Case 2 - Multiple overlapping measures

In particular, each ICS component is protected by
one or more security measure instances sj of type
Mi, as described in Table 2. We define S =
{s1, s2, . . .} as the set of involved security measure
instances. We call protection range to the set of ICS
components protected by a single instance sj .

Measure instance s1 s2 s3 s4 s5

Measure type M2 M3 M1 M4 M5

Attacker’s cost (sj) 3 7 2 12 inf

Protection range {a, c} {b} {a} {d} {c1}

Table 2: Security measures for Case 2

Each measure Mi involves a cost for the attacker that
quantifies the effort that he or she has to make in
order to bypass the measure. We model this aspect
for measure instances as a function : S ! R�0.

In the second scenario, sensors a and c are
protected by the same security measure instance
s1 (fenced area). Therefore, the cost of bypassing
s1 to compromise sensor a, sensor c, or both, is 3.
However, sensor a is also protected by the security
measure s3 (sound alarm). As a consequence,
compromising sensor a would imply to bypass both
protective measures s1 and s3. Therefore, the best
strategy in this case is to compromise the security
measures s1 and s3, involving the critical nodes a

and c, with a total cost of 3 + 2 = 5. Note that the
original metric would have counted 3+2 for sensor a
and 3 for sensor c, totalling a cost of 8.

In the next section, we formalise an hypergraph-
based extension to the base metric described in
Section 2 that allows to capture multiple security
measures applied to various ICS components in
overlapping manners.

4. EXTENDED SECURITY METRIC

4.1. Mathematical reformulation

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

 (sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(2)

3

Extended security metric (formulation)

§ Inputs: AND/OR graph, target node

§ Solution node set:

§ Functions:

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

5. Desmedt, Y., Wang, Y.: Maximum Flows and Critical Vertices in AND/OR Graphs. In:
Ibarra, O.H., Zhang, L. (eds.) Computing and Combinatorics. pp. 238–248. Springer
Berlin Heidelberg (2002)

6. Desmedt, Y., Wang, Y.: Analyzing Vulnerabilities Of Critical Infrastructures Using
Flows And Critical Vertices In And/Or Graphs. Int. J. Found. Comput. Sci. 15(1),
107–125 (2004). https://doi.org/10.1142/S0129054104002339

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

5. Desmedt, Y., Wang, Y.: Maximum Flows and Critical Vertices in AND/OR Graphs. In:
Ibarra, O.H., Zhang, L. (eds.) Computing and Combinatorics. pp. 238–248. Springer
Berlin Heidelberg (2002)

6. Desmedt, Y., Wang, Y.: Analyzing Vulnerabilities Of Critical Infrastructures Using
Flows And Critical Vertices In And/Or Graphs. Int. J. Found. Comput. Sci. 15(1),
107–125 (2004). https://doi.org/10.1142/S0129054104002339

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

5. Desmedt, Y., Wang, Y.: Maximum Flows and Critical Vertices in AND/OR Graphs. In:
Ibarra, O.H., Zhang, L. (eds.) Computing and Combinatorics. pp. 238–248. Springer
Berlin Heidelberg (2002)

6. Desmedt, Y., Wang, Y.: Analyzing Vulnerabilities Of Critical Infrastructures Using
Flows And Critical Vertices In And/Or Graphs. Int. J. Found. Comput. Sci. 15(1),
107–125 (2004). https://doi.org/10.1142/S0129054104002339

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(G) � 2 _X = {t}

(2)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

5. Desmedt, Y., Wang, Y.: Maximum Flows and Critical Vertices in AND/OR Graphs. In:
Ibarra, O.H., Zhang, L. (eds.) Computing and Combinatorics. pp. 238–248. Springer
Berlin Heidelberg (2002)

o => set of measure instances protecting
o => removes nodes in from
o => weakly connected components

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(G) � 2 _X = {t}

{si, . . . , sj}

(2)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(G) � 2 _X = {t}

{si, . . . , sj}

(2)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(G) � 2 _X = {t}

{si, . . . , sj}

(2)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

2 Mart́ın Barrère and Chris Hankin

the set of involved security measure instances. We call protection range to the set
of ICS components protected by a single instance sj .

We redefine the security metric µ(G, t) as follows:

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(�(G,X)) � 2 _X = {t}

(1)

µ(G, t) = argmin
X✓VAT

⇣ X

xi2X

'(xi) +
X

sj2S(X)

'0(sj)
⌘

s.t.
wcc(G) � 2 _X = {t}

{si, . . . , sj}

(2)

2 ToDo

1. Brief explanation of a quad-redundant flight control system [7]. Goals and de-
pendencies description with Horn clauses. Example of overall AND/OR graph for
continued safe flight and landing (with sub trees). Show compositional model.

2. AND/OR graph modelling (cyber-physical dependency model), problem formali-
sation as MAX-SAT and/or as a mixed-integer linear optimisation problem, most
likely points of failure (MLPF) and computation strategy.

3. Analytical experimentation over log space.
4. Further applications: chose failures for what-if status analysis, Identify where

to add redundancy (MLPF), prioritise failures for root cause analysis (MLPF,
dynamic updates of probabilities, dynamic risk analysis).

5. Can we identify the minimum set of resources such that the overall system score
is higher than a given probability (threshold).

References

1. Barrère, M.: META4ICS - Metric Analyser for Industrial Control Systems. https:
//github.com/mbarrere/meta4ics (May 2019)

2. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. pp. 151–158. STOC ’71,
ACM, New York, NY, USA (1971). https://doi.org/10.1145/800157.805047, http:
//doi.acm.org/10.1145/800157.805047

3. Dahiya, R., Singh, A.K.: Theoretical and Simulation Based Approach for Control-
ling Aircraft Longitudinal and Lateral Yaw Damper Movement Using PID Controller.
International Journal of Computer Sciences and Engineering 5(9), 21–26 (2017).
https://doi.org/10.26438/ijcse/v5i9.2126

4. Davies, J., Bacchus, F.: Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances. In: Lee, J. (ed.) Principles and Practice of Constraint Programming – CP
2011. pp. 225–239. Springer (2011)

www.kios.ucy.ac.cy

AND/OR hypergraph-based approach

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

where function S(X) returns the set of security
measure instances used to protect the nodes in X.
Since S(X) returns a set, measure instances that
protect more than one node in X appear only once,
and thus their costs are considered only once in
Equation 2. Note also that '(n) can be neutral (e.g.
'(n) = 0, 8n 2 VAT) to only consider the costs of
the security measures, or it can be instantiated with
cyber costs, e.g. CVSS scores (CVSS (2019)).

4.2. AND/OR hypergraph formalisation

Hypergraphs are a generalisation of standard
graphs where graph edges, called hyperedges, can
connect any number of vertices (Berge (1989)).
More formally, let X be a set of vertices X =
{x1, x2, . . . , xn}. A hypergraph on X, denoted H =
(X,E), is a family of subsets of X, with E =
{e1, e2, . . . , em}, such that: (1) there are no empty
edges in H, i.e. ei 6= ;, 8ei 2 E; and (2) X is covered
by E, i.e.

S
m

i=1 ei = X.

In this work, we propose the use of a hybrid type
of hypergraph, called AND/OR hypergraph, which
essentially combines properties of hypergraphs and
the logical structure of AND/OR graphs. Roughly
stated, the nodes of an AND/OR hypergraph are
the hyperedges of a standard hypergraph, and these
are linked using logical AND/OR nodes as done in
classical AND/OR graphs.

We use standard hypergraphs to model groups of
security measures that are applied to each ICS
component in the network. For example, let us
consider Case 2 illustrated in Figure 2. In this case,
the hypergraph is defined as H = (X,E) where X =
VAT [S is the set of nodes of the hypergraph, and
E = {e1, e2, e3, e4, e5} is the set of hyperedges. Table
3 details the members of each hyperedge ei 2 E.

e1 e2 e3 e4 e5
{a, s1, s3} {c, s1} {b, s2} {d, s4} {c1, s5}

Table 3: Hypergraph H for case 3

Hyperedges combine each network node with the
instances of the security measures that are used to
protect them. The advantage of using hypergraphs
is that we can capture multiple overlapping security
measures in the hyperedges of the hypergraph. In
addition, we can easily model protection ranges,
that is, how a specific measure instance, e.g.
a fenced area, protects multiple ICS components
simultaneously, e.g. s1 7! {a, c}.

At a semantic level, the interpretation of a hyperedge
ei is that the original node n is accompanied by
the security measures that protect it, and therefore,
node n can only be disrupted if every security
measure in ei is compromised too. Now hyperedges
can be understood as super nodes that represent

Figure 3: AND/OR hypergraph for Case 2

each original node and their protective measures.
Therefore, we can follow the same logical structure
as in the original graph and combine these super
nodes via AND/OR connectives as illustrated in
Figure 3. From a logical perspective, we map the
dependency model of the AND/OR hypergraph as
follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

As explained in (Barrère et al. (2019)), the objective
of the attacker is to falsify the previous formula
(or satisfy ¬fH(e5)) in order to make the target e5
non-functional. Since each hyperedge ei involves
many security measures plus the original node n,
the only way to falsify ei is to falsify every member
in it. Therefore, we logically capture this aspect
by replacing each hyperedge ei by a disjunctive
construct (n _ si _ . . . _ sj), where si _ . . . _ sj is the
disjunction of measure instances that protect node
n. Such a disjunctive construct actually forces a SAT
solver to make every security measure false, which
essentially equals to the fact that the attacker must
compromise all of the measures to take control of
the ICS component.

Considering the costs of the security measures as
weights for the logical variables, we extend the
MAX-SAT problem specification as explained in the
following section.

4.3. Weighted Partial MAX-SAT problem
specification

The following steps describe the actions required to
prepare the specification of the MAX-SAT problem.

1. Traverse the dependency graph G and build
an equivalent logical representation, fG(t), as
explained in Section 2.

2. Build a new formula hG(t) by replacing each
atomic node n 2 VAT in fG(t) with (n _ si _
. . ._ sj), where si _ . . ._ sj is the disjunction of
security controls that protect node n.

3. Transform the attacker’s objective ¬hG(t) into
an equisatisfiable CNF formula using the
Tseitin transformation (Tseitin (1970)).

4. Consider (si) as the penalty cost of each
variable si and '(n) for atomic nodes.

4

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

where function S(X) returns the set of security
measure instances used to protect the nodes in X.
Since S(X) returns a set, measure instances that
protect more than one node in X appear only once,
and thus their costs are considered only once in
Equation 2. Note also that '(n) can be neutral (e.g.
'(n) = 0, 8n 2 VAT) to only consider the costs of
the security measures, or it can be instantiated with
cyber costs, e.g. CVSS scores (CVSS (2019)).

4.2. AND/OR hypergraph formalisation

Hypergraphs are a generalisation of standard
graphs where graph edges, called hyperedges, can
connect any number of vertices (Berge (1989)).
More formally, let X be a set of vertices X =
{x1, x2, . . . , xn}. A hypergraph on X, denoted H =
(X,E), is a family of subsets of X, with E =
{e1, e2, . . . , em}, such that: (1) there are no empty
edges in H, i.e. ei 6= ;, 8ei 2 E; and (2) X is covered
by E, i.e.

S
m

i=1 ei = X.

In this work, we propose the use of a hybrid type
of hypergraph, called AND/OR hypergraph, which
essentially combines properties of hypergraphs and
the logical structure of AND/OR graphs. Roughly
stated, the nodes of an AND/OR hypergraph are
the hyperedges of a standard hypergraph, and these
are linked using logical AND/OR nodes as done in
classical AND/OR graphs.

We use standard hypergraphs to model groups of
security measures that are applied to each ICS
component in the network. For example, let us
consider Case 2 illustrated in Figure 2. In this case,
the hypergraph is defined as H = (X,E) where X =
VAT [S is the set of nodes of the hypergraph, and
E = {e1, e2, e3, e4, e5} is the set of hyperedges. Table
3 details the members of each hyperedge ei 2 E.

e1 e2 e3 e4 e5
{a, s1, s3} {c, s1} {b, s2} {d, s4} {c1, s5}

Table 3: Hypergraph H for case 3

Hyperedges combine each network node with the
instances of the security measures that are used to
protect them. The advantage of using hypergraphs
is that we can capture multiple overlapping security
measures in the hyperedges of the hypergraph. In
addition, we can easily model protection ranges,
that is, how a specific measure instance, e.g.
a fenced area, protects multiple ICS components
simultaneously, e.g. s1 7! {a, c}.

At a semantic level, the interpretation of a hyperedge
ei is that the original node n is accompanied by
the security measures that protect it, and therefore,
node n can only be disrupted if every security
measure in ei is compromised too. Now hyperedges
can be understood as super nodes that represent

Figure 3: AND/OR hypergraph for Case 2

each original node and their protective measures.
Therefore, we can follow the same logical structure
as in the original graph and combine these super
nodes via AND/OR connectives as illustrated in
Figure 3. From a logical perspective, we map the
dependency model of the AND/OR hypergraph as
follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

As explained in (Barrère et al. (2019)), the objective
of the attacker is to falsify the previous formula
(or satisfy ¬fH(e5)) in order to make the target e5
non-functional. Since each hyperedge ei involves
many security measures plus the original node n,
the only way to falsify ei is to falsify every member
in it. Therefore, we logically capture this aspect
by replacing each hyperedge ei by a disjunctive
construct (n _ si _ . . . _ sj), where si _ . . . _ sj is the
disjunction of measure instances that protect node
n. Such a disjunctive construct actually forces a SAT
solver to make every security measure false, which
essentially equals to the fact that the attacker must
compromise all of the measures to take control of
the ICS component.

Considering the costs of the security measures as
weights for the logical variables, we extend the
MAX-SAT problem specification as explained in the
following section.

4.3. Weighted Partial MAX-SAT problem
specification

The following steps describe the actions required to
prepare the specification of the MAX-SAT problem.

1. Traverse the dependency graph G and build
an equivalent logical representation, fG(t), as
explained in Section 2.

2. Build a new formula hG(t) by replacing each
atomic node n 2 VAT in fG(t) with (n _ si _
. . ._ sj), where si _ . . ._ sj is the disjunction of
security controls that protect node n.

3. Transform the attacker’s objective ¬hG(t) into
an equisatisfiable CNF formula using the
Tseitin transformation (Tseitin (1970)).

4. Consider (si) as the penalty cost of each
variable si and '(n) for atomic nodes.

4

§ Hypergraphs: generalisation of standard graphs where graph
edges (hyperedges) can connect any number of vertices

www.kios.ucy.ac.cy

AND/OR hypergraph resolution

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Finally, the Weighted Partial MAX-SAT problem is
instantiated as ¬hG(t), which is the objective of
the attacker, and solved by META4ICS (META4ICS
(2019)) as described in (Barrère et al. (2019)).

4.4. Execution example over Case 2

Let us reconsider Case 2 illustrated in Figure 2. This
scenario can be logically formulated as follows:

fG(c1) = c1 ^ d ^ ((a ^ b) _ (b ^ c))

Based on the protective measures, the AND/OR
hypergraph is logically mapped as follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

The new formulation hG(t) produced at step 2 is as
follows:
hG(c1) = (c1 _ s5) ^ (d _ s4) ^

(((a _ s1 _ s3) ^ (b _ s2)) _ ((b _ s2) ^ (c _ s1)))

If we now consider, for example, a unit cost on
each atomic node n, i.e. '(n) = 1, 8n 2 VAT , the
solution of the Weighted Partial MAX-SAT problem
for ¬hG(c1) is composed of instances s1 and s3 with
a total cost of 7. Informally speaking, we are trying
to find a portion of hG(c1) that can be falsified (so
¬hG(c1) is true) with minimal cost. Table 4 shows the
attacker’s costs for each measure instance that are
used as the falsification penalty scores.

Measure instance s1 s2 s3 s4 s5

Cost (attacker) 3 7 2 12 inf

Table 4: Falsification penalty scores

We can observe that if the last big clause of hG(c1)
(line 2) is falsified, then hG(c1) is falsified. We can
choose to falsify the whole disjunction by making, for
example, the sub-sentence (b _ s2) false. However,
the penalty here is 1 + 7 = 8. If (a _ s1 _ s3) and
(c _ s1) are falsified instead, the cost corresponds to
the penalty paid for the set {a, s1, s3, c} with a total
cost of 1 + 3 + 2 + 1 = 7. The other two options,
(c1 _ s5) and (d _ s4), have costs infinite and 13
respectively, so the final solution involves the critical
node set {a, c} and measures {s1, s3} with a total
cost of 7.

5. PERFORMANCE EVALUATION

We have performed a thorough experimental
analysis that shows the feasibility and performance
of our approach. In this section, we first describe
the tool and methods used within the experiments.
Afterwards, we explain the obtained results for
independent security measures applied across the
graph. Finally, we study the use of various security
measures applied to multiple nodes simultaneously
and the impact this overlapping poses in terms
of computation time. The experimental evaluation

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g
e
 r

e
so

lu
tio

n
 t
im

e
 (

se
co

n
d
s)

Number of graph nodes

Weighted partial MAX-SAT resolution time
 Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

1 security measure per node
5 security measures per node
7 security measures per node

10 security measures per node

Figure 4: Scalability evaluation while increasing graph size

has been performed using a MacBook Pro (15-
inch, 2018), 2.9 GHz Intel Core i9, 32 GB 2400
MHz DDR4.

5.1. Implementation prototype and AND/OR
graph generation

Our implementation prototype relies on META4ICS
(Barrère et al. (2019)), a Java-based security metric
analyser for ICS, available at (META4ICS (2019)).
META4ICS consumes JSON specification files that
describe ICS environments in the form of AND/OR
graphs, and outputs their security score as well as
the critical nodes that require utmost attention. In this
work, we have extended META4ICS in order to cover
hypergraph-related concepts and the application of
multiple overlapping security measures over ICS
network components.

Within our experiments, we use synthetic pseudo-
random AND/OR graphs of different size and
composition that are generated as described in
(Barrère et al. (2019)). To create an AND/OR graph
of size n, we first create the target node. Afterwards,
we create a predecessor which has one of the three
types (atomic, AND, OR) according to a probability
given by a compositional configuration predefined
for the experiment. For example, a configuration of
(60, 20, 20) means 60% of atomic nodes, 20% of
AND nodes and 20% of OR nodes. We repeat this
process creating children on the respective nodes
until we approximate the desired size of the graph n.

5.2. Independent security measures

Our first set of experiments studies the impact on
scalability and performance when we increase the
number of security measures applied independently
on each network node. Figure 4 shows the results
of this evaluation over AND/OR graphs with up to
10000 nodes.

We have measured the MAX-SAT resolution time
for graphs of different sizes in four sub-experiments
that use a different number of independent security
controls (1, 5, 7 and 10) on each graph node. Each
sub-experiment has been repeated 10 times and

5

§ Attacker’s compromise costs (used as MAX-SAT penalty values):
o Atomic nodes:

o Measure instances:

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Finally, the Weighted Partial MAX-SAT problem is
instantiated as ¬hG(t), which is the objective of
the attacker, and solved by META4ICS (META4ICS
(2019)) as described in (Barrère et al. (2019)).

4.4. Execution example over Case 2

Let us reconsider Case 2 illustrated in Figure 2. This
scenario can be logically formulated as follows:

fG(c1) = c1 ^ d ^ ((a ^ b) _ (b ^ c))

Based on the protective measures, the AND/OR
hypergraph is logically mapped as follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

The new formulation hG(t) produced at step 2 is as
follows:
hG(c1) = (c1 _ s5) ^ (d _ s4) ^

(((a _ s1 _ s3) ^ (b _ s2)) _ ((b _ s2) ^ (c _ s1)))

If we now consider, for example, a unit cost on
each atomic node n, i.e. '(n) = 1, 8n 2 VAT , the
solution of the Weighted Partial MAX-SAT problem
for ¬hG(c1) is composed of instances s1 and s3 with
a total cost of 7. Informally speaking, we are trying
to find a portion of hG(c1) that can be falsified (so
¬hG(c1) is true) with minimal cost. Table 4 shows the
attacker’s costs for each measure instance that are
used as the falsification penalty scores.

Measure instance s1 s2 s3 s4 s5

Cost (attacker) 3 7 2 12 inf

Table 4: Falsification penalty scores

We can observe that if the last big clause of hG(c1)
(line 2) is falsified, then hG(c1) is falsified. We can
choose to falsify the whole disjunction by making, for
example, the sub-sentence (b _ s2) false. However,
the penalty here is 1 + 7 = 8. If (a _ s1 _ s3) and
(c _ s1) are falsified instead, the cost corresponds to
the penalty paid for the set {a, s1, s3, c} with a total
cost of 1 + 3 + 2 + 1 = 7. The other two options,
(c1 _ s5) and (d _ s4), have costs infinite and 13
respectively, so the final solution involves the critical
node set {a, c} and measures {s1, s3} with a total
cost of 7.

5. PERFORMANCE EVALUATION

We have performed a thorough experimental
analysis that shows the feasibility and performance
of our approach. In this section, we first describe
the tool and methods used within the experiments.
Afterwards, we explain the obtained results for
independent security measures applied across the
graph. Finally, we study the use of various security
measures applied to multiple nodes simultaneously
and the impact this overlapping poses in terms
of computation time. The experimental evaluation

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g

e
 r

e
so

lu
tio

n
 t

im
e

 (
se

co
n

d
s)

Number of graph nodes

Weighted partial MAX-SAT resolution time
 Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

1 security measure per node
5 security measures per node
7 security measures per node

10 security measures per node

Figure 4: Scalability evaluation while increasing graph size

has been performed using a MacBook Pro (15-
inch, 2018), 2.9 GHz Intel Core i9, 32 GB 2400
MHz DDR4.

5.1. Implementation prototype and AND/OR
graph generation

Our implementation prototype relies on META4ICS
(Barrère et al. (2019)), a Java-based security metric
analyser for ICS, available at (META4ICS (2019)).
META4ICS consumes JSON specification files that
describe ICS environments in the form of AND/OR
graphs, and outputs their security score as well as
the critical nodes that require utmost attention. In this
work, we have extended META4ICS in order to cover
hypergraph-related concepts and the application of
multiple overlapping security measures over ICS
network components.

Within our experiments, we use synthetic pseudo-
random AND/OR graphs of different size and
composition that are generated as described in
(Barrère et al. (2019)). To create an AND/OR graph
of size n, we first create the target node. Afterwards,
we create a predecessor which has one of the three
types (atomic, AND, OR) according to a probability
given by a compositional configuration predefined
for the experiment. For example, a configuration of
(60, 20, 20) means 60% of atomic nodes, 20% of
AND nodes and 20% of OR nodes. We repeat this
process creating children on the respective nodes
until we approximate the desired size of the graph n.

5.2. Independent security measures

Our first set of experiments studies the impact on
scalability and performance when we increase the
number of security measures applied independently
on each network node. Figure 4 shows the results
of this evaluation over AND/OR graphs with up to
10000 nodes.

We have measured the MAX-SAT resolution time
for graphs of different sizes in four sub-experiments
that use a different number of independent security
controls (1, 5, 7 and 10) on each graph node. Each
sub-experiment has been repeated 10 times and

5

Analysing Mission-Critical CPS Components with
Weighted AND/OR Graphs and MAX-SAT: A Case

Study on Complex Aircraft Systems
The Authors

Imperial College London, UK
{the.authors}@imperial.ac.uk

Abstract—

I. INTRODUCTION

Measure instance s1 s2 s3 s4 s5

Attacker’s cost (si) 3 7 2 12 inf

Table I: Falsification penalty scores

This paper describes our approach towards an experimen-
tal analysis of security aspects on simulated cyber-physical
systems (CPS). We focus on industrial control systems (ICS),
in particular on water treatment plants. Figure 1 illustrates
the main components of our approach. We first formalise the
underlying physics of the involved hydraulic systems (e.g.
water tanks, flows), the cyber elements used to monitor and
control the physical processes (e.g. PLCs), and cyber as well
as simulated physical attacks on the system. We also describe
our monitoring platform for security research which we use to
conduct an extensive set of experiments. We finally provide a
security analysis based on the obtained experimental results.

Figure 1: Overall approach

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000 10000

R
e

so
lu

tio
n

 t
im

e
 (

m
ill

is
e

co
n

d
s)

Number of graph nodes

Weighted partial MAX-SAT resolution time - Pseudo-random AND/OR graphs
Conf(60,20,20) - 1 execution each

Average resolution time (milliseconds)
Min/max resolution time (milliseconds)

Figure 2: Overall approach2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8 9 10

C
o

m
p

u
ta

tio
n

 t
im

e
 (

m
ill

is
e

co
n

d
s)

Iteration number

Computation time stats - Pseudo-random AND/OR graphs (5000 nodes) - Conf(60,20,20) - 10 iters

Tseitin transformation time (milliseconds)
MAX-SAT resolution time (milliseconds)

Figure 3: Overall approach3

II. RELATED WORK

Survey [1].

III. PHYSICAL PROCESSES

Angelo’s mathematical modelling of hydraulic processes.

IV. MODELLING AND SIMULATION OF CYBER ENTITIES

Description of MiniCPS [2], our extension for Redis
support [3], and its use to model/simulate cyber entities.

V. CYBER AND CYBER-PHYSICAL ATTACKS

Description of MitM attacks with Ettercap and others.
Physical tampering simulation over physical channels (e.g.
RS232). Use of machine learning methods to learn about the

1

§ First attempt: falsify
o Cost: 1 + 7 = 8

§ Second attempt: falsify and
o Cost for set : : 1 + 3 + 2 + 1 = 7 (MIN)

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Finally, the Weighted Partial MAX-SAT problem is
instantiated as ¬hG(t), which is the objective of
the attacker, and solved by META4ICS (META4ICS
(2019)) as described in (Barrère et al. (2019)).

4.4. Execution example over Case 2

Let us reconsider Case 2 illustrated in Figure 2. This
scenario can be logically formulated as follows:

fG(c1) = c1 ^ d ^ ((a ^ b) _ (b ^ c))

Based on the protective measures, the AND/OR
hypergraph is logically mapped as follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

The new formulation hG(t) produced at step 2 is as
follows:
hG(c1) = (c1 _ s5) ^ (d _ s4) ^

(((a _ s1 _ s3) ^ (b _ s2)) _ ((b _ s2) ^ (c _ s1)))

If we now consider, for example, a unit cost on
each atomic node n, i.e. '(n) = 1, 8n 2 VAT , the
solution of the Weighted Partial MAX-SAT problem
for ¬hG(c1) is composed of instances s1 and s3 with
a total cost of 7. Informally speaking, we are trying
to find a portion of hG(c1) that can be falsified (so
¬hG(c1) is true) with minimal cost. Table 4 shows the
attacker’s costs for each measure instance that are
used as the falsification penalty scores.

Measure instance s1 s2 s3 s4 s5

Cost (attacker) 3 7 2 12 inf

Table 4: Falsification penalty scores

We can observe that if the last big clause of hG(c1)
(line 2) is falsified, then hG(c1) is falsified. We can
choose to falsify the whole disjunction by making, for
example, the sub-sentence (b _ s2) false. However,
the penalty here is 1 + 7 = 8. If (a _ s1 _ s3) and
(c _ s1) are falsified instead, the cost corresponds to
the penalty paid for the set {a, s1, s3, c} with a total
cost of 1 + 3 + 2 + 1 = 7. The other two options,
(c1 _ s5) and (d _ s4), have costs infinite and 13
respectively, so the final solution involves the critical
node set {a, c} and measures {s1, s3} with a total
cost of 7.

5. PERFORMANCE EVALUATION

We have performed a thorough experimental
analysis that shows the feasibility and performance
of our approach. In this section, we first describe
the tool and methods used within the experiments.
Afterwards, we explain the obtained results for
independent security measures applied across the
graph. Finally, we study the use of various security
measures applied to multiple nodes simultaneously
and the impact this overlapping poses in terms
of computation time. The experimental evaluation

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g
e
 r

e
so

lu
tio

n
 t
im

e
 (

se
co

n
d
s)

Number of graph nodes

Weighted partial MAX-SAT resolution time
 Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

1 security measure per node
5 security measures per node
7 security measures per node

10 security measures per node

Figure 4: Scalability evaluation while increasing graph size

has been performed using a MacBook Pro (15-
inch, 2018), 2.9 GHz Intel Core i9, 32 GB 2400
MHz DDR4.

5.1. Implementation prototype and AND/OR
graph generation

Our implementation prototype relies on META4ICS
(Barrère et al. (2019)), a Java-based security metric
analyser for ICS, available at (META4ICS (2019)).
META4ICS consumes JSON specification files that
describe ICS environments in the form of AND/OR
graphs, and outputs their security score as well as
the critical nodes that require utmost attention. In this
work, we have extended META4ICS in order to cover
hypergraph-related concepts and the application of
multiple overlapping security measures over ICS
network components.

Within our experiments, we use synthetic pseudo-
random AND/OR graphs of different size and
composition that are generated as described in
(Barrère et al. (2019)). To create an AND/OR graph
of size n, we first create the target node. Afterwards,
we create a predecessor which has one of the three
types (atomic, AND, OR) according to a probability
given by a compositional configuration predefined
for the experiment. For example, a configuration of
(60, 20, 20) means 60% of atomic nodes, 20% of
AND nodes and 20% of OR nodes. We repeat this
process creating children on the respective nodes
until we approximate the desired size of the graph n.

5.2. Independent security measures

Our first set of experiments studies the impact on
scalability and performance when we increase the
number of security measures applied independently
on each network node. Figure 4 shows the results
of this evaluation over AND/OR graphs with up to
10000 nodes.

We have measured the MAX-SAT resolution time
for graphs of different sizes in four sub-experiments
that use a different number of independent security
controls (1, 5, 7 and 10) on each graph node. Each
sub-experiment has been repeated 10 times and

5

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Finally, the Weighted Partial MAX-SAT problem is
instantiated as ¬hG(t), which is the objective of
the attacker, and solved by META4ICS (META4ICS
(2019)) as described in (Barrère et al. (2019)).

4.4. Execution example over Case 2

Let us reconsider Case 2 illustrated in Figure 2. This
scenario can be logically formulated as follows:

fG(c1) = c1 ^ d ^ ((a ^ b) _ (b ^ c))

Based on the protective measures, the AND/OR
hypergraph is logically mapped as follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

The new formulation hG(t) produced at step 2 is as
follows:
hG(c1) = (c1 _ s5) ^ (d _ s4) ^

(((a _ s1 _ s3) ^ (b _ s2)) _ ((b _ s2) ^ (c _ s1)))

If we now consider, for example, a unit cost on
each atomic node n, i.e. '(n) = 1, 8n 2 VAT , the
solution of the Weighted Partial MAX-SAT problem
for ¬hG(c1) is composed of instances s1 and s3 with
a total cost of 7. Informally speaking, we are trying
to find a portion of hG(c1) that can be falsified (so
¬hG(c1) is true) with minimal cost. Table 4 shows the
attacker’s costs for each measure instance that are
used as the falsification penalty scores.

Measure instance s1 s2 s3 s4 s5

Cost (attacker) 3 7 2 12 inf

Table 4: Falsification penalty scores

We can observe that if the last big clause of hG(c1)
(line 2) is falsified, then hG(c1) is falsified. We can
choose to falsify the whole disjunction by making, for
example, the sub-sentence (b _ s2) false. However,
the penalty here is 1 + 7 = 8. If (a _ s1 _ s3) and
(c _ s1) are falsified instead, the cost corresponds to
the penalty paid for the set {a, s1, s3, c} with a total
cost of 1 + 3 + 2 + 1 = 7. The other two options,
(c1 _ s5) and (d _ s4), have costs infinite and 13
respectively, so the final solution involves the critical
node set {a, c} and measures {s1, s3} with a total
cost of 7.

5. PERFORMANCE EVALUATION

We have performed a thorough experimental
analysis that shows the feasibility and performance
of our approach. In this section, we first describe
the tool and methods used within the experiments.
Afterwards, we explain the obtained results for
independent security measures applied across the
graph. Finally, we study the use of various security
measures applied to multiple nodes simultaneously
and the impact this overlapping poses in terms
of computation time. The experimental evaluation

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g
e
 r

e
so

lu
tio

n
 t
im

e
 (

se
co

n
d
s)

Number of graph nodes

Weighted partial MAX-SAT resolution time
 Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

1 security measure per node
5 security measures per node
7 security measures per node

10 security measures per node

Figure 4: Scalability evaluation while increasing graph size

has been performed using a MacBook Pro (15-
inch, 2018), 2.9 GHz Intel Core i9, 32 GB 2400
MHz DDR4.

5.1. Implementation prototype and AND/OR
graph generation

Our implementation prototype relies on META4ICS
(Barrère et al. (2019)), a Java-based security metric
analyser for ICS, available at (META4ICS (2019)).
META4ICS consumes JSON specification files that
describe ICS environments in the form of AND/OR
graphs, and outputs their security score as well as
the critical nodes that require utmost attention. In this
work, we have extended META4ICS in order to cover
hypergraph-related concepts and the application of
multiple overlapping security measures over ICS
network components.

Within our experiments, we use synthetic pseudo-
random AND/OR graphs of different size and
composition that are generated as described in
(Barrère et al. (2019)). To create an AND/OR graph
of size n, we first create the target node. Afterwards,
we create a predecessor which has one of the three
types (atomic, AND, OR) according to a probability
given by a compositional configuration predefined
for the experiment. For example, a configuration of
(60, 20, 20) means 60% of atomic nodes, 20% of
AND nodes and 20% of OR nodes. We repeat this
process creating children on the respective nodes
until we approximate the desired size of the graph n.

5.2. Independent security measures

Our first set of experiments studies the impact on
scalability and performance when we increase the
number of security measures applied independently
on each network node. Figure 4 shows the results
of this evaluation over AND/OR graphs with up to
10000 nodes.

We have measured the MAX-SAT resolution time
for graphs of different sizes in four sub-experiments
that use a different number of independent security
controls (1, 5, 7 and 10) on each graph node. Each
sub-experiment has been repeated 10 times and

5

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Finally, the Weighted Partial MAX-SAT problem is
instantiated as ¬hG(t), which is the objective of
the attacker, and solved by META4ICS (META4ICS
(2019)) as described in (Barrère et al. (2019)).

4.4. Execution example over Case 2

Let us reconsider Case 2 illustrated in Figure 2. This
scenario can be logically formulated as follows:

fG(c1) = c1 ^ d ^ ((a ^ b) _ (b ^ c))

Based on the protective measures, the AND/OR
hypergraph is logically mapped as follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

The new formulation hG(t) produced at step 2 is as
follows:
hG(c1) = (c1 _ s5) ^ (d _ s4) ^

(((a _ s1 _ s3) ^ (b _ s2)) _ ((b _ s2) ^ (c _ s1)))

If we now consider, for example, a unit cost on
each atomic node n, i.e. '(n) = 1, 8n 2 VAT , the
solution of the Weighted Partial MAX-SAT problem
for ¬hG(c1) is composed of instances s1 and s3 with
a total cost of 7. Informally speaking, we are trying
to find a portion of hG(c1) that can be falsified (so
¬hG(c1) is true) with minimal cost. Table 4 shows the
attacker’s costs for each measure instance that are
used as the falsification penalty scores.

Measure instance s1 s2 s3 s4 s5

Cost (attacker) 3 7 2 12 inf

Table 4: Falsification penalty scores

We can observe that if the last big clause of hG(c1)
(line 2) is falsified, then hG(c1) is falsified. We can
choose to falsify the whole disjunction by making, for
example, the sub-sentence (b _ s2) false. However,
the penalty here is 1 + 7 = 8. If (a _ s1 _ s3) and
(c _ s1) are falsified instead, the cost corresponds to
the penalty paid for the set {a, s1, s3, c} with a total
cost of 1 + 3 + 2 + 1 = 7. The other two options,
(c1 _ s5) and (d _ s4), have costs infinite and 13
respectively, so the final solution involves the critical
node set {a, c} and measures {s1, s3} with a total
cost of 7.

5. PERFORMANCE EVALUATION

We have performed a thorough experimental
analysis that shows the feasibility and performance
of our approach. In this section, we first describe
the tool and methods used within the experiments.
Afterwards, we explain the obtained results for
independent security measures applied across the
graph. Finally, we study the use of various security
measures applied to multiple nodes simultaneously
and the impact this overlapping poses in terms
of computation time. The experimental evaluation

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g
e
 r

e
so

lu
tio

n
 t
im

e
 (

se
co

n
d
s)

Number of graph nodes

Weighted partial MAX-SAT resolution time
 Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

1 security measure per node
5 security measures per node
7 security measures per node

10 security measures per node

Figure 4: Scalability evaluation while increasing graph size

has been performed using a MacBook Pro (15-
inch, 2018), 2.9 GHz Intel Core i9, 32 GB 2400
MHz DDR4.

5.1. Implementation prototype and AND/OR
graph generation

Our implementation prototype relies on META4ICS
(Barrère et al. (2019)), a Java-based security metric
analyser for ICS, available at (META4ICS (2019)).
META4ICS consumes JSON specification files that
describe ICS environments in the form of AND/OR
graphs, and outputs their security score as well as
the critical nodes that require utmost attention. In this
work, we have extended META4ICS in order to cover
hypergraph-related concepts and the application of
multiple overlapping security measures over ICS
network components.

Within our experiments, we use synthetic pseudo-
random AND/OR graphs of different size and
composition that are generated as described in
(Barrère et al. (2019)). To create an AND/OR graph
of size n, we first create the target node. Afterwards,
we create a predecessor which has one of the three
types (atomic, AND, OR) according to a probability
given by a compositional configuration predefined
for the experiment. For example, a configuration of
(60, 20, 20) means 60% of atomic nodes, 20% of
AND nodes and 20% of OR nodes. We repeat this
process creating children on the respective nodes
until we approximate the desired size of the graph n.

5.2. Independent security measures

Our first set of experiments studies the impact on
scalability and performance when we increase the
number of security measures applied independently
on each network node. Figure 4 shows the results
of this evaluation over AND/OR graphs with up to
10000 nodes.

We have measured the MAX-SAT resolution time
for graphs of different sizes in four sub-experiments
that use a different number of independent security
controls (1, 5, 7 and 10) on each graph node. Each
sub-experiment has been repeated 10 times and

5

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Finally, the Weighted Partial MAX-SAT problem is
instantiated as ¬hG(t), which is the objective of
the attacker, and solved by META4ICS (META4ICS
(2019)) as described in (Barrère et al. (2019)).

4.4. Execution example over Case 2

Let us reconsider Case 2 illustrated in Figure 2. This
scenario can be logically formulated as follows:

fG(c1) = c1 ^ d ^ ((a ^ b) _ (b ^ c))

Based on the protective measures, the AND/OR
hypergraph is logically mapped as follows:

fH(e5) = e5 ^ e4 ^ ((e1 ^ e3) _ (e3 ^ e2))

The new formulation hG(t) produced at step 2 is as
follows:
hG(c1) = (c1 _ s5) ^ (d _ s4) ^

(((a _ s1 _ s3) ^ (b _ s2)) _ ((b _ s2) ^ (c _ s1)))

If we now consider, for example, a unit cost on
each atomic node n, i.e. '(n) = 1, 8n 2 VAT , the
solution of the Weighted Partial MAX-SAT problem
for ¬hG(c1) is composed of instances s1 and s3 with
a total cost of 7. Informally speaking, we are trying
to find a portion of hG(c1) that can be falsified (so
¬hG(c1) is true) with minimal cost. Table 4 shows the
attacker’s costs for each measure instance that are
used as the falsification penalty scores.

Measure instance s1 s2 s3 s4 s5

Cost (attacker) 3 7 2 12 inf

Table 4: Falsification penalty scores

We can observe that if the last big clause of hG(c1)
(line 2) is falsified, then hG(c1) is falsified. We can
choose to falsify the whole disjunction by making, for
example, the sub-sentence (b _ s2) false. However,
the penalty here is 1 + 7 = 8. If (a _ s1 _ s3) and
(c _ s1) are falsified instead, the cost corresponds to
the penalty paid for the set {a, s1, s3, c} with a total
cost of 1 + 3 + 2 + 1 = 7. The other two options,
(c1 _ s5) and (d _ s4), have costs infinite and 13
respectively, so the final solution involves the critical
node set {a, c} and measures {s1, s3} with a total
cost of 7.

5. PERFORMANCE EVALUATION

We have performed a thorough experimental
analysis that shows the feasibility and performance
of our approach. In this section, we first describe
the tool and methods used within the experiments.
Afterwards, we explain the obtained results for
independent security measures applied across the
graph. Finally, we study the use of various security
measures applied to multiple nodes simultaneously
and the impact this overlapping poses in terms
of computation time. The experimental evaluation

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e

ra
g

e
 r

e
s
o

lu
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of graph nodes

Weighted partial MAX-SAT resolution time
 Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

1 security measure per node
5 security measures per node
7 security measures per node

10 security measures per node

Figure 4: Scalability evaluation while increasing graph size

has been performed using a MacBook Pro (15-
inch, 2018), 2.9 GHz Intel Core i9, 32 GB 2400
MHz DDR4.

5.1. Implementation prototype and AND/OR
graph generation

Our implementation prototype relies on META4ICS
(Barrère et al. (2019)), a Java-based security metric
analyser for ICS, available at (META4ICS (2019)).
META4ICS consumes JSON specification files that
describe ICS environments in the form of AND/OR
graphs, and outputs their security score as well as
the critical nodes that require utmost attention. In this
work, we have extended META4ICS in order to cover
hypergraph-related concepts and the application of
multiple overlapping security measures over ICS
network components.

Within our experiments, we use synthetic pseudo-
random AND/OR graphs of different size and
composition that are generated as described in
(Barrère et al. (2019)). To create an AND/OR graph
of size n, we first create the target node. Afterwards,
we create a predecessor which has one of the three
types (atomic, AND, OR) according to a probability
given by a compositional configuration predefined
for the experiment. For example, a configuration of
(60, 20, 20) means 60% of atomic nodes, 20% of
AND nodes and 20% of OR nodes. We repeat this
process creating children on the respective nodes
until we approximate the desired size of the graph n.

5.2. Independent security measures

Our first set of experiments studies the impact on
scalability and performance when we increase the
number of security measures applied independently
on each network node. Figure 4 shows the results
of this evaluation over AND/OR graphs with up to
10000 nodes.

We have measured the MAX-SAT resolution time
for graphs of different sizes in four sub-experiments
that use a different number of independent security
controls (1, 5, 7 and 10) on each graph node. Each
sub-experiment has been repeated 10 times and

5

www.kios.ucy.ac.cy

Disjoint security measures

§ Scalability evaluation while increasing graph size
§ Fast resolution for base problem (one measure per node)

 0

 10

 20

 30

 40

 50

 60

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
g
e
 r

e
so

lu
tio

n
 t
im

e
 (

se
co

n
d
s)

Number of graph nodes

Weighted partial MAX-SAT resolution time
 Pseudo-random AND/OR graphs - Conf(60,20,20) - Varying number of security measures per node

1 security measure per node
5 security measures per node
7 security measures per node

10 security measures per node

www.kios.ucy.ac.cy

Overlapping security measures (1)

§ Variation analysis of overlapping measures
§ Graph with 1000 nodes

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g

e
 r

e
so

lu
tio

n
 t

im
e

 (
m

ill
is

e
co

n
d

s)

Probability of overlapping security measures (0: no intersection, 1: full intersection)

Weighted partial MAX-SAT resolution time - Pseudo-random AND/OR graphs - 1000 nodes
 Conf(60,20,20) - Overlapping variation between 0 and 100%

1 security measure per node
3 security measures per node
5 security measures per node
7 security measures per node

10 security measures per node

www.kios.ucy.ac.cy

Overlapping security measures (2)

 0

 5

 10

 15

 20

 25

 30

G(1000 nodes) G(3000 nodes) G(5000 nodes) G(7000 nodes) G(10000 nodes)

M
A

X
-S

A
T

 r
e
so

lu
tio

n
 t
im

e
 (

se
co

n
d
s)

Overlapping configuration (0%, 50%, 100%)

Probability variations on AND-OR graphs (5 security measures)

Probability 0.0 Probability 0.5 Probability 1.0

§ Overlapping analysis on graphs of different sizes
§ Same pattern (more overlapping => faster resolution)

www.kios.ucy.ac.cy

Case study

Tank
T1

Centrifugal
Pump

P1 Borehole

s4

s6

s1s2

s5

PLC T1 PLC P1

v(k)

s5(k)

s3

c1(k)

a1 a2

§ Focus: water transport networks (base sub-system)

§ Pressure sensors s1 (before) and s2 (after) the pump P1
§ Flow sensor s3 (pump outflow)
§ Water level sensor s5 at tank T1 with flow sensors (s4 and s6)
§ Two PLCs: agent a1 (tank T1) and agent a2 (pump P1)

www.kios.ucy.ac.cy

Case study

Tank
T1Borehole

s4

s6

s1
s2

s5

PLC
T1

PLC
P1

v1(k)

s3

c1(k)

Centrifugal
Pump

P2

Tank
T2

Centrifugal
Pump

P3

Tank
T3

PLC
T2v2(k)

c2(k)

PLC
P3

c3(k)

PLC
T3v3(k)

s12

s18

s7

s8

s10

s11

s13

s14

s16

s17

PLC
P2

s9

s15

Centrifugal
Pump

P1

§ Base sub-system repeated in larger infrastructures

www.kios.ucy.ac.cy

Data collection and preparation
§ Measures acquired from utility operators and public sources
§ Attacker’s cost: three-point rating scale

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Tank
T1

Centrifugal
Pump

P1 Borehole

s4

s6

s1s2

s5

PLC T1 PLC P1

v(k)

s5(k)

s3

c1(k)

a1 a2

Figure 8: Basic WTN component (Nicolaou et al. (2018))

6. CASE STUDY

Our case study is focused on water transport
networks (WTNs) where we examine the applicability
of our approach over real WTNs typically deployed in
European countries.

6.1. Case study description

Typical WTNs are composed of the following
main physical elements: (i) tanks, (ii) pumping
stations, (iii) water sources (e.g., boreholes), and
(iv) pipes. To monitor the status of each element,
utilities deploy electronic sensing devices and collect
measurements regarding the flow, pressure, level,
and quality of the water that flows in the system. A
typical configuration found in several water utilities
(see Trifunovic (2006)) is similar to the one shown in
Figure 8. The same structure appears repeatedly in
larger infrastructures. In this work, we focus on the
subsystem shown in Figure 8.

In this setup, drinking water is extracted from a water
source (e.g., a borehole or another tank) using a
pump. The pump increases the water pressure which
pushes the water into a tank, which may be located a
few kilometres away at a higher elevation. The water
tank is then used to provide water to consumers,
as well as to transfer water to other subsystems, for
instance, through another pump-tank subsystem.

The subsystem shown in Figure 8 involves the
following sensing elements: a pressure sensor
before the pump (s1), a pressure sensor after the
pump (s2), and a water flow sensor (s3) measuring
the pump outflow. At the water tank, flow sensors
(s4, s6) may also be installed for monitoring the inflow
and outflow respectively. For its operation, the control
system is comprised of two Programmable Logic
Controllers (PLCs); one situated at the pump and the
other at the water tank. These PLCs are connected
to the system’s sensors and actuators, and execute
programs to achieve the control objectives. More
specifically, the sensing node s5 provides the water
level state measurement s5(k) to the agent a1 in
PLC-T1, where k is the discrete time step. Then,
the control logic is executed, and the result v(k) is
transmitted to PLC-P1, where another control logic
a2 is executed. Agent a2 instructs the contactor (i.e.,
an electrically operated relay) through a signal c1(k)

to turn on/off the pump, should the pump flow s3 be
below a threshold.

6.2. Data collection and preparation

Various security measures are applied by water
utilities in order to protect the components of their
systems against malicious actors. We have acquired
data from a number of water utilities and public
information sources in order to: (i) determine typical
measures used to protect their infrastructures, and
(ii) identify components that are protected by multiple
overlapping measures.

Table 6 presents a sample list of the measures
acquired. We evaluate three different factors in order
to calculate the cost of the attacker to compromise
a security measure: (i) skills/knowledge required to
design and execute the attack (f1), (ii) tools needed
for the attack (f2), and (iii) time needed to execute
the attack(f3). We use a three-point scale to rate the
three factors for each measure, as shown in Table 5.

Factor / Rate 1 2 3

Skills (f1) no special skills
/ knowledge

advanced skills /
knowledge

expert skills /
knowledge

Tools (f2) off-the-shelf
tools

non-conventional
tools required

specialized
tools

Time (f3)  10 min 10-30 min � 30 min

Table 5: Attacker’s cost - Three-point rating scale

Then, for each collected measure m, we calculate
the attacker cost (m) as the product of each
individual rating: (m) = f1⇥ f2⇥ f3.

The cost of each component determines the level of
difficulty an attacker will have to compromise it. The
security measures along with their individual ratings
and attack costs are depicted in Table 6.

Measure Skills Tools Time Attack
cost

Description

F1 1 1 1 1 Fenced area (wire)
F2 1 2 1 2 Fenced area (locked

underground facility)
B1 1 1 2 2 Building + regular lock
B2 2 2 2 8 Building + secure lock
A1 2 3 2 12 Door alarm
A2 3 2 3 18 Alarm on telemetry box
A3 1 1 3 3 Patrol unit
P1 1 2 1 2 Locked box
P2 2 2 2 8 Cable protection

Table 6: Typical security measures and attack costs

Based on this information, we have used our
methodology to determine the security level of such
infrastructures.

6.3. Base WTN subsystem (no redundancy)

According to the collected data, the base WTN
subsystem shown in Figure 8 involves multiple

7

111:18 Martín Barrère, Chris Hankin, Nicolas Nicolaou, Demetrios G. Eliades, and Thomas Parisini

required to design and execute the a�ack (f 1), (ii) tools needed for the a�ack (f 2), and (iii) time
needed to execute the a�ack (f 3). We use a three-point scale to rate the three factors for each
measure, as shown in Table 7.

Factor / Rate 1 2 3

Skills (f 1) no special skills/knowledge advanced skills/knowledge expert skills/knowledge
Tools (f 2) o�-the-shelf tools non-conventional tools required specialized tools
Time (f 3)  10 min 10-30 min � 30 min

Table 7. A�acker’s cost - Three-point rating scale

Then, for each collected measurem, we calculate the a�acker cost � (m) as the product of each
individual rating: � (m) = f 1 ⇥ f 2 ⇥ f 3. The cost of each component determines the level of
di�iculty an a�acker will have to compromise it. The security measures along with their individual
ratings and a�ack costs are depicted in Table 8.

Measure Skills Tools Time Attack cost Description

F1 1 1 1 1 Fenced area (wire)
F2 1 2 1 2 Fenced area (locked underground facility)
B1 1 1 2 2 Building + regular lock
B2 2 2 2 8 Building + secure lock
A1 2 3 2 12 Door alarm
A2 3 2 3 18 Alarm on telemetry box
A3 1 1 3 3 Patrol unit
P1 1 2 1 2 Locked box
P2 2 2 2 8 Cable protection

Table 8. Typical security measures and a�ack costs

Based on this information, we have used our methodology to determine the security level of
such infrastructures.

8.3 Base WTN subsystem (no redundancy)
According to the collected data, the base WTN subsystem shown in Fig. 14 involves multiple
security measures that simultaneously protect various components as shown in Table 9. For
example, agent a1 is protected by a wired fence (F1-2), located inside a building with a security
lock (B1-1), and an alarm system (A3-1). Sensor s5 is also protected by the same measure instances
but also by a protection box (P2-2). In order to make the scenario even more interesting, we assume
the special case where c1 has been heavily protected and cannot be compromised (infinite cost).

Components Security measures Total cost

s3 {F2-1, P1-2, A2-2} 22
s5 {F1-2, B1-1, A3-1, P2-2} 14
a1 {F1-2, B1-1, A3-1} 6
a2 {F1-1, B2-1, P1-1, A2-1} 29
c1 {F1-1, B2-1} 9 + inf (special case)

Table 9. Measures per component (base subsystem)

The total cost for an a�acker to compromise a component n is computed as
P
m2Sn � (m), where

Sn is the set of security measures protecting n. Given the AND/OR specification of the base
subsystem with no redundancy, we have run META4ICS in order to identify the set of critical ICS
components and security measures, as shown in Fig. 16.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

Tank
T1

Centrifugal
Pump

P1 Borehole

s4

s6

s1s2

s5

PLC T1 PLC P1

v(k)

s5(k)

s3

c1(k)

a1 a2

Figure 8: Basic WTN component (Nicolaou et al. (2018))

6. CASE STUDY

Our case study is focused on water transport
networks (WTNs) where we examine the applicability
of our approach over real WTNs typically deployed in
European countries.

6.1. Case study description

Typical WTNs are composed of the following
main physical elements: (i) tanks, (ii) pumping
stations, (iii) water sources (e.g., boreholes), and
(iv) pipes. To monitor the status of each element,
utilities deploy electronic sensing devices and collect
measurements regarding the flow, pressure, level,
and quality of the water that flows in the system. A
typical configuration found in several water utilities
(see Trifunovic (2006)) is similar to the one shown in
Figure 8. The same structure appears repeatedly in
larger infrastructures. In this work, we focus on the
subsystem shown in Figure 8.

In this setup, drinking water is extracted from a water
source (e.g., a borehole or another tank) using a
pump. The pump increases the water pressure which
pushes the water into a tank, which may be located a
few kilometres away at a higher elevation. The water
tank is then used to provide water to consumers,
as well as to transfer water to other subsystems, for
instance, through another pump-tank subsystem.

The subsystem shown in Figure 8 involves the
following sensing elements: a pressure sensor
before the pump (s1), a pressure sensor after the
pump (s2), and a water flow sensor (s3) measuring
the pump outflow. At the water tank, flow sensors
(s4, s6) may also be installed for monitoring the inflow
and outflow respectively. For its operation, the control
system is comprised of two Programmable Logic
Controllers (PLCs); one situated at the pump and the
other at the water tank. These PLCs are connected
to the system’s sensors and actuators, and execute
programs to achieve the control objectives. More
specifically, the sensing node s5 provides the water
level state measurement s5(k) to the agent a1 in
PLC-T1, where k is the discrete time step. Then,
the control logic is executed, and the result v(k) is
transmitted to PLC-P1, where another control logic
a2 is executed. Agent a2 instructs the contactor (i.e.,
an electrically operated relay) through a signal c1(k)

to turn on/off the pump, should the pump flow s3 be
below a threshold.

6.2. Data collection and preparation

Various security measures are applied by water
utilities in order to protect the components of their
systems against malicious actors. We have acquired
data from a number of water utilities and public
information sources in order to: (i) determine typical
measures used to protect their infrastructures, and
(ii) identify components that are protected by multiple
overlapping measures.

Table 6 presents a sample list of the measures
acquired. We evaluate three different factors in order
to calculate the cost of the attacker to compromise
a security measure: (i) skills/knowledge required to
design and execute the attack (f1), (ii) tools needed
for the attack (f2), and (iii) time needed to execute
the attack(f3). We use a three-point scale to rate the
three factors for each measure, as shown in Table 5.

Factor / Rate 1 2 3

Skills (f1) no special skills
/ knowledge

advanced skills /
knowledge

expert skills /
knowledge

Tools (f2) off-the-shelf
tools

non-conventional
tools required

specialized
tools

Time (f3)  10 min 10-30 min � 30 min

Table 5: Attacker’s cost - Three-point rating scale

Then, for each collected measure m, we calculate
the attacker cost (m) as the product of each
individual rating: (m) = f1⇥ f2⇥ f3.

The cost of each component determines the level of
difficulty an attacker will have to compromise it. The
security measures along with their individual ratings
and attack costs are depicted in Table 6.

Measure Skills Tools Time Attack
cost

Description

F1 1 1 1 1 Fenced area (wire)
F2 1 2 1 2 Fenced area (locked

underground facility)
B1 1 1 2 2 Building + regular lock
B2 2 2 2 8 Building + secure lock
A1 2 3 2 12 Door alarm
A2 3 2 3 18 Alarm on telemetry box
A3 1 1 3 3 Patrol unit
P1 1 2 1 2 Locked box
P2 2 2 2 8 Cable protection

Table 6: Typical security measures and attack costs

Based on this information, we have used our
methodology to determine the security level of such
infrastructures.

6.3. Base WTN subsystem (no redundancy)

According to the collected data, the base WTN
subsystem shown in Figure 8 involves multiple

7

§ Cost function

www.kios.ucy.ac.cy

Base subsystem (no redundancy)

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

security measures that simultaneously protect
various components as shown in Table 7. For
example, agent a1 is protected by a wired fence
(F1-2), located inside a building with a security lock
(B1-1), and an alarm system (A3-1). Sensor s5 is
also protected by the same measure instances but
also by a protection box (P2-2). In order to make
the scenario even more interesting, we assume the
special case where c1 has been heavily protected
and cannot be compromised (infinite cost).

Components Security measures Total cost

s3 {F2-1, P1-2, A2-2} 22
s5 {F1-2, B1-1, A3-1, P2-2} 14
a1 {F1-2, B1-1, A3-1} 6
a2 {F1-1, B2-1, P1-1, A2-1} 29
c1 {F1-1, B2-1} 9 + inf (special case)

Table 7: Measures per component (base subsystem)

The total cost to compromise a component n

is computed as
P

m2Sn
 (m), where Sn is the

set of security measures protecting n. Given the
AND/OR specification of the base subsystem with
no redundancy, we have run META4ICS in order
to identify the set of critical ICS components and
security measures, as shown in Figure 9.

(a) AND/OR graph (b) AND/OR hypergraph

Figure 9: Base scenario

Figure 9a shows the AND/OR graph of the network
where, given the applied measures, META4ICS
has identified agent a1 at PLC-T1 as the weakest
point that can disable actuator c1. Its compromise
implies to bypass three security measures (F1-2,
B1-1, A3-1) with a total cost of 6. Figure 9b shows
the AND/OR hypergraph of the system involving
its multiple overlapping measures. Agent a1 is
responsible for measuring the water level of the
tank and deciding whether to send a signal to turn
on/off the pump. Note that sensor s5, which also
measures the level of the tank, was not identified as
a critical node as it is guarded with stronger security
measures and a total attack cost of 14 (see Table 7).

6.4. Extended WTN subsystem with redundancy

WTN systems are typically set up using the
minimum configuration. However, additional sensors
and agents can be used to introduce analytical
redundancy in order to ensure the reliable operation
of the system. In that context, we have analysed
an extended scenario, detailed in (Nicolaou et
al. (2018)), involving the components and security

Components Security measures Total cost

a2, a7, a8, a10 {F1-1, B2-1, P1-1, A2-1} 29
a1, a3, a9 {F1-2, B1-1, A3-1} 6
s1, s2 {F1-1, B2-1} 9
c1 {F1-1, B2-1} 9 + inf (special case)
s3 {F2-1, P1-2, A2-2} 22
s4 {F1-2, B1-1, A3-1, P2-1} 14
s5 {F1-2, B1-1, A3-1, P2-2} 14
s6 {F2-2, P1-3, A2-3, A3-1} 25

Table 8: Measures per component (redundant subsystem)

measures listed in Table 8. Table 9 on the other hand
shows the components protected by each measure
instance and their costs.

Measure
instance

Measure
type

Attacker
cost

Protection range

F1-1 F1 1 {a2, a7, a8, a10, c1, s1, s2}
F1-2 F1 1 {a1, a3, a9, s4, s5}
F2-1 F2 2 {s3}
F2-2 F2 2 {s6}
B1-1 B1 2 {a1, a3, a9, s4, s5}
B2-1 B2 8 {a2, a7, a8, a10, c1, s1, s2}
A2-1 A2 18 {a2, a7, a8, a10}
A2-2 A2 18 {s3}
A2-3 A2 18 {s6}
A3-1 A3 3 {a1, a3, a9, s4, s5, s6}
P1-1 P1 2 {a2, a7, a8, a10}
P1-2 P1 2 {s3}
P1-3 P1 2 {s6}
P2-1 P2 8 {s4}
P2-2 P2 8 {s5}

Table 9: Components per measure instance

The structure of the network as well as the
critical nodes identified by META4ICS are shown in
Figure 10. The optimal strategy indicated by the tool
involves agent a1 and sensor s2 as the critical nodes
and five different measure instances (F1-2, B1-1,
A3-1, F1-1, B2-1) that should be violated so as to
disable actuator c1, with a total attack cost of 15. Note
that the security level of this configuration is much
higher than the settings without redundancy.

Figure 10: AND/OR hypergraph with overlapping measures

8

§ Solution:
o Critical nodes: agent a1
o Security measures:

F1-2, B1-1, A3-1
o Total cost: 6

META4ICS display

www.kios.ucy.ac.cy

Extended subsystem (with redundancy)Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

security measures that simultaneously protect
various components as shown in Table 7. For
example, agent a1 is protected by a wired fence
(F1-2), located inside a building with a security lock
(B1-1), and an alarm system (A3-1). Sensor s5 is
also protected by the same measure instances but
also by a protection box (P2-2). In order to make
the scenario even more interesting, we assume the
special case where c1 has been heavily protected
and cannot be compromised (infinite cost).

Components Security measures Total cost

s3 {F2-1, P1-2, A2-2} 22
s5 {F1-2, B1-1, A3-1, P2-2} 14
a1 {F1-2, B1-1, A3-1} 6
a2 {F1-1, B2-1, P1-1, A2-1} 29
c1 {F1-1, B2-1} 9 + inf (special case)

Table 7: Measures per component (base subsystem)

The total cost to compromise a component n

is computed as
P

m2Sn
 (m), where Sn is the

set of security measures protecting n. Given the
AND/OR specification of the base subsystem with
no redundancy, we have run META4ICS in order
to identify the set of critical ICS components and
security measures, as shown in Figure 9.

(a) AND/OR graph (b) AND/OR hypergraph

Figure 9: Base scenario

Figure 9a shows the AND/OR graph of the network
where, given the applied measures, META4ICS
has identified agent a1 at PLC-T1 as the weakest
point that can disable actuator c1. Its compromise
implies to bypass three security measures (F1-2,
B1-1, A3-1) with a total cost of 6. Figure 9b shows
the AND/OR hypergraph of the system involving
its multiple overlapping measures. Agent a1 is
responsible for measuring the water level of the
tank and deciding whether to send a signal to turn
on/off the pump. Note that sensor s5, which also
measures the level of the tank, was not identified as
a critical node as it is guarded with stronger security
measures and a total attack cost of 14 (see Table 7).

6.4. Extended WTN subsystem with redundancy

WTN systems are typically set up using the
minimum configuration. However, additional sensors
and agents can be used to introduce analytical
redundancy in order to ensure the reliable operation
of the system. In that context, we have analysed
an extended scenario, detailed in (Nicolaou et
al. (2018)), involving the components and security

Components Security measures Total cost

a2, a7, a8, a10 {F1-1, B2-1, P1-1, A2-1} 29
a1, a3, a9 {F1-2, B1-1, A3-1} 6
s1, s2 {F1-1, B2-1} 9
c1 {F1-1, B2-1} 9 + inf (special case)
s3 {F2-1, P1-2, A2-2} 22
s4 {F1-2, B1-1, A3-1, P2-1} 14
s5 {F1-2, B1-1, A3-1, P2-2} 14
s6 {F2-2, P1-3, A2-3, A3-1} 25

Table 8: Measures per component (redundant subsystem)

measures listed in Table 8. Table 9 on the other hand
shows the components protected by each measure
instance and their costs.

Measure
instance

Measure
type

Attacker
cost

Protection range

F1-1 F1 1 {a2, a7, a8, a10, c1, s1, s2}
F1-2 F1 1 {a1, a3, a9, s4, s5}
F2-1 F2 2 {s3}
F2-2 F2 2 {s6}
B1-1 B1 2 {a1, a3, a9, s4, s5}
B2-1 B2 8 {a2, a7, a8, a10, c1, s1, s2}
A2-1 A2 18 {a2, a7, a8, a10}
A2-2 A2 18 {s3}
A2-3 A2 18 {s6}
A3-1 A3 3 {a1, a3, a9, s4, s5, s6}
P1-1 P1 2 {a2, a7, a8, a10}
P1-2 P1 2 {s3}
P1-3 P1 2 {s6}
P2-1 P2 8 {s4}
P2-2 P2 8 {s5}

Table 9: Components per measure instance

The structure of the network as well as the
critical nodes identified by META4ICS are shown in
Figure 10. The optimal strategy indicated by the tool
involves agent a1 and sensor s2 as the critical nodes
and five different measure instances (F1-2, B1-1,
A3-1, F1-1, B2-1) that should be violated so as to
disable actuator c1, with a total attack cost of 15. Note
that the security level of this configuration is much
higher than the settings without redundancy.

Figure 10: AND/OR hypergraph with overlapping measures

8

Assessing Cyber-Physical Security in Industrial Control Systems
Barrère • Hankin • Eliades • Nicolaou • Parisini

security measures that simultaneously protect
various components as shown in Table 7. For
example, agent a1 is protected by a wired fence
(F1-2), located inside a building with a security lock
(B1-1), and an alarm system (A3-1). Sensor s5 is
also protected by the same measure instances but
also by a protection box (P2-2). In order to make
the scenario even more interesting, we assume the
special case where c1 has been heavily protected
and cannot be compromised (infinite cost).

Components Security measures Total cost

s3 {F2-1, P1-2, A2-2} 22
s5 {F1-2, B1-1, A3-1, P2-2} 14
a1 {F1-2, B1-1, A3-1} 6
a2 {F1-1, B2-1, P1-1, A2-1} 29
c1 {F1-1, B2-1} 9 + inf (special case)

Table 7: Measures per component (base subsystem)

The total cost to compromise a component n

is computed as
P

m2Sn
 (m), where Sn is the

set of security measures protecting n. Given the
AND/OR specification of the base subsystem with
no redundancy, we have run META4ICS in order
to identify the set of critical ICS components and
security measures, as shown in Figure 9.

(a) AND/OR graph (b) AND/OR hypergraph

Figure 9: Base scenario

Figure 9a shows the AND/OR graph of the network
where, given the applied measures, META4ICS
has identified agent a1 at PLC-T1 as the weakest
point that can disable actuator c1. Its compromise
implies to bypass three security measures (F1-2,
B1-1, A3-1) with a total cost of 6. Figure 9b shows
the AND/OR hypergraph of the system involving
its multiple overlapping measures. Agent a1 is
responsible for measuring the water level of the
tank and deciding whether to send a signal to turn
on/off the pump. Note that sensor s5, which also
measures the level of the tank, was not identified as
a critical node as it is guarded with stronger security
measures and a total attack cost of 14 (see Table 7).

6.4. Extended WTN subsystem with redundancy

WTN systems are typically set up using the
minimum configuration. However, additional sensors
and agents can be used to introduce analytical
redundancy in order to ensure the reliable operation
of the system. In that context, we have analysed
an extended scenario, detailed in (Nicolaou et
al. (2018)), involving the components and security

Components Security measures Total cost

a2, a7, a8, a10 {F1-1, B2-1, P1-1, A2-1} 29
a1, a3, a9 {F1-2, B1-1, A3-1} 6
s1, s2 {F1-1, B2-1} 9
c1 {F1-1, B2-1} 9 + inf (special case)
s3 {F2-1, P1-2, A2-2} 22
s4 {F1-2, B1-1, A3-1, P2-1} 14
s5 {F1-2, B1-1, A3-1, P2-2} 14
s6 {F2-2, P1-3, A2-3, A3-1} 25

Table 8: Measures per component (redundant subsystem)

measures listed in Table 8. Table 9 on the other hand
shows the components protected by each measure
instance and their costs.

Measure
instance

Measure
type

Attacker
cost

Protection range

F1-1 F1 1 {a2, a7, a8, a10, c1, s1, s2}
F1-2 F1 1 {a1, a3, a9, s4, s5}
F2-1 F2 2 {s3}
F2-2 F2 2 {s6}
B1-1 B1 2 {a1, a3, a9, s4, s5}
B2-1 B2 8 {a2, a7, a8, a10, c1, s1, s2}
A2-1 A2 18 {a2, a7, a8, a10}
A2-2 A2 18 {s3}
A2-3 A2 18 {s6}
A3-1 A3 3 {a1, a3, a9, s4, s5, s6}
P1-1 P1 2 {a2, a7, a8, a10}
P1-2 P1 2 {s3}
P1-3 P1 2 {s6}
P2-1 P2 8 {s4}
P2-2 P2 8 {s5}

Table 9: Components per measure instance

The structure of the network as well as the
critical nodes identified by META4ICS are shown in
Figure 10. The optimal strategy indicated by the tool
involves agent a1 and sensor s2 as the critical nodes
and five different measure instances (F1-2, B1-1,
A3-1, F1-1, B2-1) that should be violated so as to
disable actuator c1, with a total attack cost of 15. Note
that the security level of this configuration is much
higher than the settings without redundancy.

Figure 10: AND/OR hypergraph with overlapping measures

8

www.kios.ucy.ac.cy

Extended scenario (META4ICS display)

§ Solution: nodes a1 and s2, instances F1-2, B1-1, A3-1, F1-1, B2-1
§ Total cost: 15

www.kios.ucy.ac.cy

Conclusion

§ Identification of security-critical nodes in ICS environments

§ Security metric as least-effort attack strategy

§ AND/OR graph-based models
§ Base problem (weighted AND/OR graphs)
§ Multiple overlapping security measures (AND/OR hypergraphs)

§ Combination of AND/OR graphs with MAX-SAT optimisation
techniques

§ Experimental results indicate very good scalability

§ Practical analysis of a realistic water transport network

www.kios.ucy.ac.cy

Future work

§ Evaluation on other ICS environments
§ Smart grid, power plants

§ Integrate attack graphs at the cyber level

§ Consider budget constraints

§ Automated generation of AND/OR graph models for ICS

Software Diversity

With Tingting Li and Feng Cheng

Motivation
Software Diversity -- an Effective Defense Strategy
Ø Software mono-culture promotes and accelerates the spread of malware.
Ø Diversification can mitigate the infection of malware between similar products and

reduce the likelihood of repeating application of single exploits.
Ø More essential when combating zero-day exploits.
Existing work on Diversity-inspired defence
Ø From the software development: n-version programming, code randomization, etc..
Ø From the perspective of security management:

• Optimal product assignment by distributed colouring algorithm [CCS’04]
• Diversifying routing nodes in a network [TDSC’15]
• Security metrics to evaluate network diversify and resilience. [ESORICS’10, TIFS’16]

Ø Assumption -- Products share no vulnerabilities between each other.
Ø Assumption -- only one vulnerable product/service running at each host.

0

0 0

0

0

1

1

0 0

0

1

0

exploits

entry

target

(b) diversifying single-label
hosts

1

1 1

1

1

1

1

1 1

1

1

1

exploits

entry

target

(a) Mono-culture single-label
hosts

0.5

0.5 0.5

0.5

0.5

1

1

0.5 0.5

0.5

1

0.5

exploits

entry

target

(c) diversifying single-label
hosts with similarity

0.5

0.5 0.5

0.5 1

0.5

1

1

0.5 0.5

0.5 1

1

0.5

exploits
exploits

entry

target

(d) diversifying multi-label
hosts with similarity

Main Contributions
Objectives
Ø An accurate model to determine the infection of potential exploits across a network.
Ø An efficient way to find product assignments to minimise the prevalence of 0day exploits.

Main Contributions
Ø Modelled various services/products at each host and exposed attack vectors.

Ø Proposed the metric vulnerability similarity of products; Statistical study of CVE/NVD.

Ø Formally model the multi-labelling network by a discrete Markov Random Field (MRF);
Optimised by the sequential tree-reweighted message passing (TRW-S) algorithm.

Ø A case study inspired by Stuxnet Propagation to
• Find the optimal assignment against the collaboration of multiple 0day exploits
• Evaluate the optimal result in a NetLogo simulation in terms of MTTC.

Ø Scalability analysis of our optimisation method against
Ø Large-scale networks with up to 10,000 hosts.
Ø High-density networks with up to 50 degrees (# edges) per host.
Ø High-complexity networks with up to 30 products/services per host.
Ø Most heavy cases converged from a couple of seconds to ~3 minutes.

Similarity Metrics
Similarity of Products Vulnerability based on CVE/NVD
Ø Firstly define the similarity between a pair of products;

• capture statistically how similar the vulnerabilities found on two products are.
• likelihood of being compromised by the same exploit.

Common Platform Enumerations(CPE):
- well-formed naming scheme for IT

systems, platforms and packages.

cpe:/PART:VENDOR:PRODUCT:VERSION

Ø Common Vulnerability Enumerations (CVE) and National Vulnerability Database (NVD)

Similarity Metrics
Similarity of Products Vulnerability based on CVE/NVD
Ø 84,229 vulnerabilities in NVD; CPE serves to sort vulnerabilities according to affected products.
Ø Compare most vulnerable OS products and Web Browsers [CVE Details] from 1999 to 2016.

Similarity Metrics

(b) a network (c) the infection model
with assigned products

0.4

0.2

0.6

0.4

0.2

0.3

0.5

0.6

0.5

0.5

ProductsServices

(a) available products

Similarity of Hosts and Infection Models
Ø Each host runs a set of services:
Ø Each service is provided by a set of products:
Ø An assignment of products for a host:
Ø Estimate the infection rate by comparing the assigned products (i.e. similarity of hosts).

Optimal Assignment of Diverse Products
Formal Model by Markov Random Field (MRF)

Ø Each service has various selections of products à up to labels.
Ø Each host provides multiple services à up to labels.
Ø Sufficient flexibility and generality.
Ø Existence of feasible/efficient optimisation solution.
Ø The optimal diversification problem à find an optimal label for each service at each host

Optimisation

Ø Given an infection model , the energy function is given as:

Ø Solved by tree-reweighted message passing algorithm (TRW-S) [TPAMI’15].
Ø Generally guarantees an optimal solution; outperforms others algorithms in heavy tasks.

Case Study– Stuxnet Propagation
c1

c2

c3

c4
f1

z1 z2

z3 z4

f2

p1

p3

p2

t1 t2t3

t5 t4t6

(b) The corresponding network topology

(c) Available products for each host [WinCC Manual]

[Tofino Security’11]

Case Study– Stuxnet Propagation

c1

c2

c3

c4
f1

z1 z2

z3 z4

f2

e1

e2

p1

p3

p2

t1 t2t3

t5 t4t6

Win8
IE8

Ubt14
ChromeDebian8

Chrome
MySQL

Win8
IE8

MSSQL12

f1

Win8 Win8
MSSQL12

Win10
IE8

Ubt14.04
IE8

Ubt14.04
Chrome
MySQL

Win10
IE8

MSSQL14

Win8
MSSQL12

f2

Win8
IE8

MSSQL14

Win10
IE10

MSSQL12

Ubt14.04
Chrome

Win8
IE8

Win8
IE8

Win8
IE10

c1

c2

c3

c4
z1 z2

z4z3

p1 p2

p3

t1 t3 t2

t4t5t6

Ø The solution uses product similarities obtained from CVE/NVD statistically.
Ø Minimizes the infection rate at each edge by choosing most diverse product pairs.
Ø Locally optimal assignment might be discarded for global optimum (e.g. c4 and c2).

Case Study– Stuxnet Propagation
NetLogo Simulation for Evaluation
Ø NetLogo is an agent-

based modelling tool.
Ø Programmable modelling

environment
Ø Simulate behaviours of

systems and natural
phenomena over time.

Ø Two attacker modes.
Ø # Ticks = MTTC
Ø Six hosts are seamlessly

protected.
Ø Real-time plot of MTTC

Case Study– Stuxnet Propagation
NetLogo Simulation for Evaluation
Ø Compare the OPTIMAL assignment with a RANDOM assignment in terms of MTTC.

Ø An extra experiment with a larger network (100 nodes, ~300 edges and 5 services per host).

Scalability Analysis on Random Networks
Scalability with Randomly generated networks

Ø Computational time consumed by optimising a set of randomly generated networks.
Ø Three key parameters: # hosts, # degrees (edges per host), # services per host.

Ø (A) fixed # degree = 3, # services = 3
Ø (B) fixed # hosts = 100, # services = 3
Ø (C) fixed # hosts = 100, # degrees = 30
Ø Mid-range computer: Intel i5 2.8GHz CPU, a 8GB RAM and a nVidia GTX 750
Ø The # hosts has a major impact. Still converged within 7.342 seconds for 10,000 hosts.

Scalability Analysis on Random Networks

Ø Scalability analysis against high-density, high-complexity and large-scale networks.
Ø Performs well and converges within about 3 minutes.

Table 1: Computational time (in seconds) for networks of various densities over different # hosts

Table 2: Computational time (in seconds) for various sizes of networks over different # degrees

Table 3: Computational time (in seconds) for various sizes of networks over different # services

Scalability with Randomly generated networks

Conclusion and Future work

Ø Proposed an efficient way to mitigate zero-day infection over a network by optimally
diversifying products deployed on the hosts

Ø Introduced the similarity metric to capture how similar the vulnerabilities of two products
are. Applied in statistical study on CVE/NVD database.

Ø Estimated the infection rate of malware between products by the similarity metrics.

Ø A multi-label model is adopted to capture the spread of multiple zero-day exploits.

Ø Developed an efficient and scalable optimisation method.

Ø Other sources/ways to measure the similarity metric.

Ø Consider interdependency between services and preference over products.

Intrusion Detection

Work by Deeph Chana and Feng Cheng

NIDS – Anomaly Detection (Cheng, Li and Chana)

Package Level Detection by Bloom Filter
ØConstruct a signature database by observing regular communication patterns.
ØIncorporate the signature database into the bloom filter detector.
ØDetect anomalous data packets at packet-content level.

Time-series Level Detection by Long Short Term Memory (LSTM)
ØAddress temporal dependence between consecutive packets
ØLearn the most likely packet signatures from seen packets by LSTM.
ØFurther classification of packets at time-series level.

Evaluation by Public ICS Database and Comparison
ØApply to a public ICS dataset created from a SCADA system for a gas pipeline.
ØSignificantly outperform other existing approach and produce state-of-the-art

results.

Public ICS Dataset by Mississippi State SCADA Lab

Mississippi ICS Attack Dataset
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

• A lab-scale testbed of a gas pipeline
SCADA

• Deep inspection of Modbus data log
• 214,580 normal packets + 60,048

attack packets
• 20 unique features in ARFF Format.
• 7 common types of attacks.

Data Collection Model (Turnipseed 2015) A gas pipeline SCADA (Turnipseed 2015)

Public ICS Dataset by Mississippi State SCADA Lab

Mississippi ICS Attack Dataset

Type of Attacks Abbreviation

Normal Normal(0)

Naïve Malicious Response Injection NMRI(1)

Complex Malicious Response Injection CMRI(2)

Malicious State Command Injection MSCI(3)

Malicious Parameter Command Injection MPCI(4)

Malicious Function Code Injection MFCI(5)

Denial of Service DOS(6)

Reconnaissance Recon(7)

ARFF Data Format

Seven Types of Attacks

Package Level Detection by Bloom Filters

Signature database

• observe a large normal time-series dataset.
• A sequence of data packets:

• A single packet with m features:

• A signature of a packet:

• Assign a unique value to each different combination of original features.

Feature Discretization
• Find optimal granularity of discretization (too coarse --> high FN; too fine --> high

FP)

• Find the finest-grained discretization whose FP rate is below the acceptable FP.

0
1
1
0
1
1

1

...
...

anomaly
detected

Time-series
Anomaly Detector

Bloom Filter
Detector

anomaly
detected

normalnormal

Package Level Detection by Bloom Filters

Bloom-filter (BF) Anomaly Detector

• BF is a light-weight data structure; test if an
element is a member of a set.

• Insert all the normal packet signatures into
the BF detector

• Hash functions map each element to the
corresponding positions of a bit vector.

• Lookup an element by hashing it by the same functions, and
check:

0
1
1
0
1
1

1

...
...

anomaly
detected

Time-series
Anomaly Detector

Bloom Filter
Detector

anomaly
detected

normalnormal

Time-series Level Detection by LSTM
Long Short-Term Memory (LSTM)

• Advanced anomalies can only be detected by
observing preceding packets.

• Recurrent neutral network (RNN) specialise in
sequence learning to predict time series.

• Memorize/back-propagate through time for training.
• Identify anomalies with long time lags in between.

0
1
1
0
1
1

1

...
...

anomaly
detected

Time-series
Anomaly Detector

Bloom Filter
Detector

anomaly
detected

normalnormal

Cell

Input Gate Output Gate

Input Output

Forget Gate

A Memory Cell in LSTM

Time Series Learning of LSTM

Time-series Level Detection by LSTM
Stacked LSTM Anomaly Detector
• Store the normal signature database into the LSTM

detector

• Input previous network packets (in discretized
representation)

• Output the predicted probability of each signature of
next packet

• The top kth most probable signatures are used to
classify:

• Optimal choice of k; similar as granularity of
discretization.

• Add probabilistic noise in training to weaken overfitting.

LSTM Layer

LSTM Layer

Softmax Activation Layer

...

...

...

Training & Validation

• Split dataset: 60% training + 20% validation + 20% testing
• Discretization of continuous features by k-means and the validation error.

• A stacked two layer LSTM; each layer has 256 memory units; output 613
signatures.

• Train the LSTM with/without noise for 50 training epochs.
• Error ratio converges quickly to 0.
• Similar top-k (after k>3) error for models with/without noise.

Experiments – Training & Validation

Precision, Recall, Accuracy and …

• Precision is the fraction of positive elements that
are true positives.

• Recall: is the fraction of relevant (false negative)
elements that are classified as true positives.

• Accuracy is the fraction of the whole sample that is
correctly classified as either a true positive or a true
negative.

… F1

• F-measure combines precision and recall. The most
common measure is the F1-measure which is
computed as:

2 x precision x recall
precision + recall

• which can be interpreted as a weighted average.

Experiments – Comparison

Comparison with Other Anomaly Detection Methods

• Evaluation metrics – Precision, Recall, Accuracy and F-score.

• Compare with other anomaly detection methods.

• Detected ratio (recall) for seven types of attacks.

Evasion Attacks

Originally discovered by researchers when trying to
better interpret neural networks.

Szegedy, Christian, et al. "Intriguing properties of neural networks." (2013).

Stealthy Attacks (Cheng, Li and Chana)

Objectives
ØA framework for conducting stealthy attacks with minimal knowledge of the target

ICS

ØBetter understanding of the limitations of current detection mechanisms, and the
real threat posed by stealthy attacks to ICS.

Main Contributions
ØDemonstrated attacks can be automatically achieved by intercepting the

sensor/control signals for a period of time using a particularly designed real-time
learning method.

ØUsed adversarial training technique – Wasserstein GAN to generate false data that
can successfully bypass the IDS and still deliver specific attack goals.

ØTwo real-world datasets are used to validate the effectiveness of our framework.
ØA gas pipeline SCADA system.
Ø Secure Water treatment testbed from iTrust@SUTD.

FIELD

CONTROL

SUPERVISION

PLC/RTU

Sensor Actuator

HMI HMI

...

ADS

Master Control Station

ADS

Master Control Station

m
ea
su
re
m
en
ts

co
m
m
an
ds

PLC/RTU

Sensor Actuator

PLC/RTU

Sensor Actuator...

HMI

Stealthy Attacks against ICS

Ø Intercept the expected behaviours of the system via compromised
channels.

Ø Injected malicious sensor reading at each time step to achieve certain
attack goals.

ØAttackers attempt to hide their manipulation; remain undetected by ADS.

Monitoring
signals

Anomaly Detection Mechanism for Securing Industrial Processes
Ø Protect from physical faults and cyber attacks by monitoring the sensor reading & control commands.
Ø Rely on a Predictive Model which predicts the next sensor measurements based on previous signals.

Existing Predictive Models
Ø Auto-Regressive (AR) model

§ Fit a linear regression model for each reading
based on its p previous readings.

Ø Linear Dynamic State-space (LDS) model
§ A vector w for physical states
§ Matrices for system dynamics.
§ Noise vectors.
§ Known as the State Estimator

Ø Long Short-Term Memory (LSTM) [HASE’17]
§ State-of-the-art prediction accuracy
§ hidden vector computed iteratively
§ Weight matrix and bias vector

Anomaly Detection for Industrial Processes

Observed:
Predicted:

Detection Methods
Ø An anomalous signal is detected when the residual error between the predicted and observed:

Ø Use the history of residual errors to detect collective anomalies, by Cumulative Sum (CUSUM) based
on an accumulated statistic:

Formally Define Stealthy Attacks
Ø A general anomaly detector as a function:

Ø Consider the ADS is a black-box for attackers.
Ø A certain number of PLC-sensor and PLC-actuator channels are

compromised.
Ø Define a set of stealthy attack goals -- inject malicious values that are deviant

with the true values

Anomaly Detection for Industrial Processes

WGAN-based Training Model for Stealthy Attacks
Ø Reconnaissance phase + Attacking phase

Ø A Wasserstein Generative Adversarial Net (W-GAN) is constructed for training

Ø W-GAN: an iterative game between two players (Generator and Discriminator)
§ Generator: generates data with the same distribution as the training data
§ Discriminator: distinguish generated data from training data
§ At each step, either G or D is trained to optimize its objective function.
§ Until Discriminator fails…

Deep Learning Framework for Stealthy Attacks

G
D

True data
up to t-1

False data
up to t-1

False
data at t

True
data at t

True / False
data up to t-1

Anomalous?

Malicious Measurement Generator
Ø Generate malicious data achieving attack goals.
Ø As a sequence learning problem, solved by LSTM-FNN.
Ø Two sliding windows:

Ø Generator as an overall function:

Ø Minimize the chance being detected and deliver the goal:

Substitute Anomaly Detector
Ø Approximate the black-box anomaly detector.
Ø Input the window of previous data and the current data;

Output the classification.
Ø Detector as an overall function:

Ø Larger values for malicious; smaller values for true data.

Deep Learning Framework for Stealthy Attacks

GAN: Generator + Detector
Ø Generating malicious data which makes the detector output smallest possible values whilst

achieving the goals.

Mississippi Dataset of a gas pipeline SCADA
Ø Controls the air pressure in a pipeline; contains a

PLC, a sensor and several actuators.

Ø Pressure measurements at every 2s, 68,803 time
series signals are collected.

GAS Pipeline Case Study

Features Description
Setpoint The pressure set point

Gain PID gain

Reset rate PID reset rate

Deadband PID dead band

Cycle time PID cycle time

Rate PID rate

System mode Automatic(2), manual (1) or off (0)

Control scheme Pump (0) or valve (1)

Pump Open(1) or off (0) – for manual mode

Valve Open(1) or off (0) – for manual mode

Pressure measurement Pressure measurement

Experiment Setup
Ø Baseline Anomaly Detector uses LSTM model.

Ø Four Attack Scenarios: being 4 or 8 units smaller
than real values; different compromised channels

Results and Evaluation
Ø Generated malicious measurements successfully capture the trend of the real trace.

Ø Generated malicious measurements mostly can bypass the anomaly detector
Ø Most malicious values have similar or less residual error than the true values.
Ø Outliers are caused by HMI human input at manual mode.

Ø Ratio of attack goal achieved the detection ratio of malicious measurements
Ø Ignored the outliers (residual error > 0.05)
Ø Less detection ratio for attack scenario 3 and 4.
Ø Only compromising PLC-sensor channel still generates high-quality attacks.

GAS Pipeline Case Study

UK/Singapore cyber security research

Security by Design for
Interconnected Critical Infrastructures

Experiment Setup
Ø A water treatment plant (SWaT from iTrust@SUTD) maintains the water quality within acceptable limits.
Ø 51 sensors extracted every second, in total 496,800 signals for normal operation are collected.

Ø Focus on generating malicious HCI and NaOCI measurements, still within normal range.

Water Treatment System Case Study

Features Description
AIT201 Measures NaCl level

AIT202 Measures HCI level

AIT203 Measures NaOCl level

FIT201 Flow transmitter for dosing pumps

P101 Raw water tank pump state

MV201 Motorized vale state

P201 NaCl dosing pump state

P203 HCI dosing pump state

P205 NaOCl dosing pump state

Simulation and Evaluation
Ø A successful attack -- either the HCI (>0.99) or the NaOCI (<0.01) dosing pump is turned on

unexpectedly by the injected malicious measurements + bypassed the detector.

Future work

ØProposed a novel GAN based stealthy attack framework, required a much lower
a-priori knowledge of the targeted ICS.

ØDeveloped a real-time adversarial learning method allowing attackers to inject
malicious data to automatically conduct stealthy attacks without being detected.

Ø Indicated that with recent development in deep learning, the widely recognized
effectiveness of existing anomaly detection techniques might be overestimated.

ØMore advanced anomaly detection frameworks are needed.

Thank you

ritics.org
c.hankin@imperial.ac.uk

