Anatomy of an Attack

Chris Hankin

Emerging Topics in ICS Security

- Bring Your Own Device (BYOD)
- Virtual Machine Technologies
- Security Monitoring in an ICS environment
- ICS Intrusion Detection and Prevention Systems
- Security Information and Event Management (SIEM) technologies
- ICS Supply Chain Management
- Managed Services and Outsourcing
- Leveraging Cloud Services
 in ICS

Basis for ICS Security Controls

- Identification and Characterization of Risk
- Criticality-Based Asset Inventory
- Understanding Company Risk Appetite
- Implementation of Tailored Security Controls

- Using Communications Monitoring
- · Physical Security Controls
- · ICS Network Architecture
- · Network Security Architecture

	FY 2017 Most Prevalent Weaknesses						
Area of Weakness	Rank	Risk					
Poundany Protoction	4	Undetected unauthorized activity in critical systems					
Boundary Protection	Ţ	Weaker boundaries between ICS and enterprise networks					
Identification and Authentication		 Lack of accountability and traceability for user actions if an account is compromised 					
(Organizational Users)	2	 Increased difficulty in securing accounts as personnel leave the organization, especially sensitive for users with administrator access 					
Allocation of Resources	3	No backup or alternate personnel to fill position if primary is unable to work					
Allocation of Resources		Loss of critical knowledge of control systems					
	4	 Unauthorized physical access to field equipment and locations provides increased opportunity to: 					
Physical Access Control		 Maliciously modify, delete, or copy device programs and firmware 					
		 Access the ICS network 					
		 Steal or vandalize cyber assets 					
		 Add rogue devices to capture and retransmit network traffic 					
Account Management	Б	Compromised unsecured password communications					
Account Management	Э	 Password compromise could allow trusted unauthorized access to systems 					
Least Functionality	6	 Increased vectors for malicious party access to critical systems 					
Least runguonality	0	Rogue internal access established					

CISA ASSESSMENTS: FISCAL YEAR 2019 MOST PREVALENT IT AND OT WEAKNESSES AND RISKS

Lockheed Martin Cyber Kill Chain™

• Atomic, Computed and Behavioural indicators

 Military doctrine: F2T2EA – find, fix, track, target, engage, assess

Courses of Action

Phase	Detect	Deny	Disrupt	Degrade	Deceive	Destroy
Reconnaissance	Web analytics	Firewall ACL				
Weaponization NIDS		NIPS				
Delivery	Vigilant user	Proxy filter	In-line AV	Queuing		
Exploitation	HIDS	Patch	DEP			
Installation HIDS		"chroot" jail	AV			
C2	NIDS	Firewall ACL	NIPS	Tarpit	DNS redirect	
Actions on Objectives	Audit log			Quality of Service	Honeypot	

From: Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains, by Hutchins et al, Lockheed Martin Corporation

Reconnaissance

- Research, identification and selection of targets
- Physical surveillance
- Internet presence
- Social media
- Family and close acquaintances of potential targets

Weaponization

- Embedding of malware into delivery mechanism
- Typically a remote access trojan (RAT)
- Adobe PDF
- Microsoft Office Document

Delivery

- Removable Media (USB)
- E-mail attachment
- Website

Exploitation

 Exploit Vulnerability in application software or operating system

			⊜ cve.	mitre.org	C		0 1
BBC - Home		Imperial College London		Institute for Security Scie	ence and Technology Imperi	c	VE - Home
Common Vulnerabilities and Exposures	CVE List	CNAs	WGs	Board	About	News & Blog	Go to for: CVSS Scores CPE Info Advanced Search
		Search CVE List		Download CVE	Data Feeds	Request CVE IDs	Update a CVE Entry
						тота	L CVE Entries: 121552
HOME > CVE LIST HOME							
CVE List Home					Tweets by @	CVEnew	θ
CVE® is a dictionary of publicly to search, use, and incorporate	y disclosed cybersect into products and s	urity vulnerabilities and ervices, per the <u>terms o</u>	exposu of use.	ires that is free	CVE		y
The CVE List is built by <u>CVE Numbering Authorities</u> (CNAs). Every <u>CVE Entry</u> added to the list is assigned by a CNA.					CVE-201 4.1.8 for	7-18577 The mailchimp-for WordPress has XSS via the	wp plugin before return value of
The CVE List feeds the U.S. Na	tional Vulnerability D	atabase (NVD) — learn	more.		add_quer	ry_arg. cve.mitre.org/cgi-bir	/cvenam

- Exploit user behavior
- Exploit auto-execution facility

Installation

• RAT or backdoor installed on the target system to allow persistent access.

access to their networks.

HAVEX Infection Chain

vendor sites.

hosted in these websites.

Command and Control (C2)

• F-Secure found that the HAVEX RAT used compromised web-sites as C2 servers:

abainternationaltoursandtravel.com adultfriendgermany.com africancranesafaris.com alexvernigor.com al-mashkoor.com alpikaclub.com antibioticsdrugstore.com arsch-anus.com artem.sataev.com artsepid.com ask.az atampy.com

Action on Objectives

- Data exfiltration
- Data integrity
- Data availability

• Hopping off point

Courses of Action

Phase	Detect	Deny	Disrupt	Degrade	Deceive	Destroy
Reconnaissance	Web analytics	Firewall ACL				
Weaponization NIDS		NIPS				
Delivery	Vigilant user	Proxy filter	In-line AV	Queuing		
Exploitation	HIDS	Patch	DEP			
Installation HIDS		"chroot" jail	AV			
C2	NIDS	Firewall ACL	NIPS	Tarpit	DNS redirect	
Actions on Objectives	Audit log			Quality of Service	Honeypot	

From: Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains, by Hutchins et al, Lockheed Martin Corporation

The Purdue Model

The ICS Kill Chain

Validation

• Testing on target system

• Construction of testbed facilities

Cyber Attack on the Ukrainian Power Grid

Completion of Stage 1 of the ICS Cyber Kill Chain:

Identify and gain access to a system able to communicate with target SIS.

Stage 2 Develop:

Identify target SIS type and develop TRISIS with replacement logic and loader

Stage 2 Test:

Ensure TRISIS works as intended, likely off network in the adversary environment

Stage 2 Deliver:

Transfer TRISIS to the SIS which contains the 'loader' module for the new logic and support binaries that provide the new logic

Stage 2 Install/Modify:

Upon running the TRISIS executable, disguised as Triconex software for analyzing SIS logs, the malicious software utilizes the embedded binary files to identify the appropriate location in memory on the controller for logic replacement and uploads the 'initializing code' (4-byte sequence)

Stage 2 Execute ICS Attack:

TRISIS verifies the success of the previous step and then uploads new ladder logic to SIS

Figure 4: TRISIS Attack Flow

Stage 1 of the ICS Cyber Kill Chain Completed

Step 1: Verify Communications to SIS

Step 2: Identify Memory Location for Logic Upload

Step 3: Copy "Start Code" for Logic Replacement and Verify

Step 4: Upload New Ladder Logic to SIS

Triton/Trisis

Source: Trisis Malware, Dragos

Vermont Electric Company

Other Attacks

- Shamoon wiper attack in Middle East; 2012 to 2018 (ongoing)
- Petya ransomware using same EternalBlue exploit as WannaCry; 2016
- NOTPetya masquerading as ransomware;
 2017
- Mirai IoT devices; 2016

Mirai Botnet

Understanding the Mirai Botnet, Antonakakis et al

CWE

CWETM is a community-developed list of software and hardware weakness types. It serves as a common language, a measuring stick for security tools, and as a baseline for weakness identification, mitigation, and prevention efforts.

Please see our <u>Guidelines for New Content Suggestions</u> For other ways to get involved, <u>contact us</u>

Rank	ID	Name	Score	KEV Count (CVEs)	Rank Change vs. 2021
1	CWE-787	Out-of-bounds Write	64.20	62	0
2	CWE-79	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')	45.97	2	0
3	<u>CWE-89</u>	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')	22.11	7	+3 🔺
4	<u>CWE-20</u>	Improper Input Validation	20.63	20	0
5	CWE-125	Out-of-bounds Read	17.67	1	-2 🔻
6	CWE-78	Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')	17.53	32	-1 🔻
7	CWE-416	Use After Free	15.50	28	0
8	CWE-22	Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')	14.08	19	0
9	CWE-352	Cross-Site Request Forgery (CSRF)	11.53	1	0
10	CWE-434	Unrestricted Upload of File with Dangerous Type	9.56	6	0
11	CWE-476	NULL Pointer Dereference	7.15	0	+4 🔺
12	CWE-502	Deserialization of Untrusted Data	6.68	7	+1 🔺
13	CWE-190	Integer Overflow or Wraparound	6.53	2	-1 🔻
14	CWE-287	Improper Authentication	6.35	4	0
15	CWE-798	Use of Hard-coded Credentials	5.66	0	+1 🔺
16	CWE-862	Missing Authorization	5.53	1	+2 🔺
17	<u>CWE-77</u>	Improper Neutralization of Special Elements used in a Command ('Command Injection')	5.42	5	+8 🔺
18	CWE-306	Missing Authentication for Critical Function	5.15	6	-7 🔻
19	CWE-119	Improper Restriction of Operations within the Bounds of a Memory Buffer	4.85	6	-2 🔻
20	CWE-276	Incorrect Default Permissions	4.84	0	-1 🔻
21	CWE-918	Server-Side Request Forgery (SSRF)	4.27	8	+3 🔺
22	CWE-362	Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')	3.57	6	+11 🔺
23	CWE-400	Uncontrolled Resource Consumption	3.56	2	+4 🔺
24	CWE-611	Improper Restriction of XML External Entity Reference	3.38	0	-1 🔻
25	<u>CWE-94</u>	Improper Control of Generation of Code ('Code Injection')	3.32	4	+3 🔺

CVE

The mission of the CVE® Program is to identify, define, and catalog publicly disclosed cybersecurity vulnerabilities.

CVSS

```
nvd.nist.gov
```

C

E Common Vulnerability Scoring System Calculator

This page shows the components of the CVSS score for example and allows you to refine the CVSS base score. Please read the CVSS standards guide to fully understand how to score CVSS vulnerabilities and to interpret CVSS scores. The scores are computed in sequence such that the Base Score is used to calculate the Temporal Score and the Temporal Score is used to calculate the Environmental Score.

CVSS continued

Common Vulnerability Scoring System (CVSS-SIG)

Calculator

- Specification Document
- User Guide
- Examples
- CVSS v3.1 Documentation & Resources
- CVSS v3.0 Archive
- CVSS v2 Archive
- CVSS v1 Archive
- JSON & XML Data Representations
- CVSS On-Line Training Course
- Identity & logo usage

Common Vulnerability Scoring System Version 3.1 Calculator

Hover over metric group names, metric names and metric values for a summary of the information in the official CVSS v3.1 Specification Document. The Specification is available in the list of links on the left, along with a User Guide providing additional scoring guidance, an Examples document of scored vulnerabilities, and notes on using this calculator (including its design and an XML representation for CVSS v3.1).

Base Score	Select for a	t values Il base
Attack Vector (AV)	Scope (S)	rics to erate core
Network (N) Adjacent (A) Local (L) Physical (P)	Unchanged (U) Changed (C)	
Attack Complexity (AC)	Confidentiality (C)	
Low (L) High (H)	None (N) Low (L) High (H)	
Privileges Required (PR)	Integrity (I)	
None (N) Low (L) High (H)	None (N) Low (L) High (H)	
User Interaction (UI)	Availability (A)	
None (N) Required (R)	None (N) Low (L) High (H)	

Base Score

Vector String -CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:N/A:N

Temporal Score	Select values for all base
Exploit Code Maturity (E)	metrics to generate score
Not Defined (X) Unproven (U) Proof-of-Concept (P) Functional (F) High (H)	
Remediation Level (RL)	
Not Defined (X) Official Fix (O) Temporary Fix (T) Workaround (W) Unavailable (U)	
Report Confidence (RC)	
Not Defined (X) Unknown (U) Reasonable (R) Confirmed (C)	

CAPEC

Understanding how the adversary operates is essential to effective cybersecurity. CAPEC[™] helps by providing a comprehensive dictionary of known patterns of attack employed by adversaries to exploit known weaknesses in cyber-enabled capabilities. It can be used by analysts, developers, testers, and educators to advance community understanding and enhance defenses.

CAPEC List Quick Access View CAPEC by Mechanisms of Attack by Domains of Attack by Other Criteria	New to CAPEC? Start Here! New to CAPEC? Common Attack Pa Classifications (CAP Someone new to cy offers tips on how CAPEC has to offer extensive knowledge	ttern Enumerations and PEC [™]) can be overwhelming to vber-attack patterns. This page to familiarize yourself with what , before more fully exploring this ge base.	CAPEC News News CAPEC List Version 3.8 Now Available News New CWE/CAPEC Board Member from University of Nebraska Omaha			
Search CAPEC	Community	Community Engagement				
ENHANCED BY Google Total Attack Patterns: 555	Rest API Working Group User Experience Working Group CWE/CAPEC Board	Join the CWE/CAPEC Rest API WG Join the CWE/CAPEC UX WG Read the meeting minutes	News Strobes Security Added to "CAPEC Organization Usage" Page that Highlights How Vendors Are Using CAPEC			
			More >>			

To get involved, contact us

CAPEC VIEW: Mechanisms of Attack

View ID: 1000 Structure: Graph

Objective

This view organizes attack patterns hierarchically based on mechanisms that are frequently employed when exploiting a vulnerability. The categories that are members of this view represent the different techniques used to attack a system. They do not, however, represent the consequences or goals of the attacks. There exists the potential for some attack patterns to align with more than one category depending on one's perspective. To counter this, emphasis was placed such that attack patterns as presented within each category use a technique not sometimes, but without exception.

Relationships

View Metrics

The following graph shows the tree-like relationships between attack patterns that exist at different levels of abstraction. At the highest level, categories exist to group patterns that share a common characteristic. Within categories, meta level attack patterns are used to present a decidedly abstract characterization of a methodology or technique. Below these are standard and detailed level patterns that are focused on a specific methodology or technique used.

Expand All | Collapse All

1000 - Mechanisms of Attack

- —⊞ Engage in Deceptive Interactions (156)
- —⊞ Abuse Existing Functionality (210)
- —⊞ @ Manipulate Data Structures (255)
- —⊞ Manipulate System Resources (262)
- —⊞ Inject Unexpected Items (152)
- —⊞ ⊕ Employ Probabilistic Techniques (223)
- 🖲 🖲 Manipulate Timing and State (172)
- —⊞ @ Collect and Analyze Information (118)
- —⊞ Subvert Access Control (225)

BACK TO TOP

	CAPECs in this view		Total CAPECs
Attack Patterns	517	out of	517
Categories	9	out of	49
Views	0	out of	9
Total	526	out of	575

Downloads: Booklet | CSV | XML

Status: Stable

MITRE ATT&CK For ICS

Initial Access	Execution	Persistence	Evasion	Discovery	Lateral Movement	Collection	Command and Control	Inhibit Response Function	Impair Process Control	Impact
Data Historian Compromise	Change Program State	Hooking	Exploitation for Evasion	Control Device Identification	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Drive-by Compromise	Command-Line Interface	Module Firmware	Indicator Removal on Host	I/O Module Discovery	Exploitation of Remote Services	Data from Information Repositories	Connection Proxy	Alarm Suppression	Change Program State	Denial of Control
Engineering Workstation Compromise	Execution through API	Program Download	Masquerading	Network Connection Enumeration	External Remote Services	Detect Operating Mode	Standard Application Layer Protocol	Block Command Message	Masquerading	Denial of View
Exploit Public- Facing Application	Graphical User Interface	Project File Infection	Rogue Master Device	Network Service Scanning	Program Organization Units	Detect Program State		Block Reporting Message	Modify Control Logic	Loss of Availability
External Remote Services	Man in the Middle	System Firmware	Rootkit	Network Sniffing	Remote File Copy	I/O Image		Block Serial COM	Modify Parameter	Loss of Control
Internet Accessible Device	Program Organization Units	Valid Accounts	Spoof Reporting Message	Remote System Discovery	Valid Accounts	Location Identification		Data Destruction	Module Firmware	Loss of Productivity and Revenue
Replication Through Removable Media	Project File Infection		Utilize/Change Operating Mode	Serial Connection Enumeration		Monitor Process State		Denial of Service	Program Download	Loss of Safety
Spearphishing Attachment	Scripting					Point & Tag Identification		Device Restart/Shutdown	Rogue Master Device	Loss of View
Supply Chain Compromise	User Execution					Program Upload		Manipulate I/O Image	Service Stop	Manipulation of Control
Wireless Compromise		-				Role Identification		Modify Alarm Settings	Spoof Reporting Message	Manipulation of View
						Screen Capture		Modify Control Logic	Unauthorized Command Message	Theft of Operational Information
							-	Program Download		
								Rootkit		
								System Firmware		
								Utilize/Change Operating		

Mode

High Level Models (ICS Kill Chain)

Mid-level Model (MITRE ATT&CK for ICS)

Low Level Concepts (CVE, DHS CISA Advisories)

Comparison

- CAPEC is focused on application security
- ATT&CK is focused on network security:
 - Hunting for new threats
 - Enhancing threat intelligence
 - Adversary emulation

Summary

- Sophisticated attacks involve a long process, involving multiple phases – they are sociotechnical
- Average time to detect a data breach currently 212 days and 75 days to fix (IBM)
- CWE, CVE focus on individual steps
- CAPEC, ATT&CK focus on whole attack
- Kill Chains and NIST provide more abstract view from attacker and defender perspectives.