Optimization of CIS
 ECE 802

Tutorial 2 - Quadratic programming

L. Tziovani and A. Astolfi

Quadratic programming: Quadratic programming is a class of non-linear optimization problems in which the objective function is quadratic, the constraints are linear, and all the variables are continuous, $\mathbf{x} \in \mathbf{R}^{\mathbf{n}}$

$$
\begin{aligned}
\operatorname{minimize} & \left(\frac{1}{2}\right) \boldsymbol{x}^{T} \boldsymbol{P} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x}+r \\
\text { subject to } & \boldsymbol{a}_{j}^{T} \boldsymbol{x} \leq b_{j}, j=1, \ldots, J \\
& \widehat{\boldsymbol{a}}_{i}^{T} \boldsymbol{x}=\hat{b}_{i}, i=1, \ldots, I
\end{aligned}
$$

where \boldsymbol{P} is the Hessian matrix of the objective function, denoting the coefficients of the quadratic term; vector $\boldsymbol{c} \in \boldsymbol{R}^{n}$ denotes the coefficients of the linear term and $r \in \boldsymbol{R}$ is a constant. QP programs are convex when the objective function is convex which is true when $\boldsymbol{P} \in \boldsymbol{S}_{+}^{n}$, where \boldsymbol{S}_{+}^{n} is the set of symmetric positive semidefinite matrices. Convex QP programs can be solved efficiently using interiorpoint methods

An example of convex and non-convex functions is demonstrated in Figure 1.1.

Figure 1.1: Convex and non-convex functions: Function $f_{a}(x)=x^{2}+2$ is convex because the chord joining any two points on the curve always falls entirely on or above the curve between those two points, while function $f_{b}(x)=\sin x$ is non-convex.

Example 1 (a): Find the minimum of

$$
f(x)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-2 x_{1}-6 x_{2}
$$

Subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 2 \\
-x_{1}+2 x_{2} \leq 2 \\
2 x_{1}+x_{2} \leq 3
\end{gathered}
$$

Solve the problem using the Matlab optimization solver quadprog (https://www.mathworks.com/help/optim/ug/quadprog.html)

quadprog

Quadratic programming

Solver for quadratic objective functions with linear constraints. quadprog finds a minimum for a problem specified by

$$
\min _{x} \frac{1}{2} x^{T} H x+f^{T} x \text { such that }\left\{\begin{aligned}
A \cdot x & \leq b \\
A e q \cdot x & =b e q \\
l b & \leq x \leq u b .
\end{aligned}\right.
$$

H, A, and Aeq are matrices, and $f, b, b e q, l b, u b$, and x are vectors.
Solution: In quadprog syntax, this problem is to minimize

$$
f(x)=\frac{1}{2} x^{T} H x+l^{T} x
$$

with

$$
\begin{gathered}
H=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]: \text { Hessian matrix of } f \\
l=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]: \text { Coefficients of the linear terms }
\end{gathered}
$$

Note: The Hessian matrix of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] .
$$

Matlab code:

```
H = [1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb=[-inf -inf];
ub=[inf inf];
Aeq=[];
beq=[];
[xl,fvall,exitflag] = quadprog(H,f,A,b,Aeq, beq, lb,ub);
```

Examine the final point, function value (fvall), and exit flag:
$x 1=[0.6667,1.3333], f(x)=-8.22$, exitflag=1

An exit flag of 1 means the result is a local minimizer. Because H is a positive definite matrix, this problem is convex, so the minimizer is a global minimizer. Confirm that H is positive definite by checking its eigenvalues:
$\mathrm{eig}(H)=[0.38 ; 2.61]$

Plot the objective function to validate graphically that this function is convex

```
clear all;
clc;
x1 = linspace(-10,10,30);
x2 = linspace(-10,10,30);
```

\%\% Convex function
for $i=1$: length (x 1)
for $j=1$: length (x 2)
$z(i, j)=0.5^{*} \times 1(i)^{\wedge} 2+x 2(j)^{\wedge} 2-x 1(i) * x 2(j)-2^{*} \times 1(i)-6^{*} x 2(j) ;$
end
end
figure(1)
$\operatorname{surf}(x 1, x 2, z)$
grid on;
xlabel('x1');
ylabel('x2');
zlabel('z');
title('Convex function: $\left.f(x 1, \times 2)=0.5 \times 1^{\wedge} 2+\times 2^{\wedge} 2-\times 1 \times 2-2 \times 1-6 \times 2^{\prime}\right)$;

Example 1 (b): For Example 1 (a), compute the unconstrained global minimizer.

```
H = [1 -1; -1 2];
f = [-2; -6];
A = [];
b = [];
lb=[-inf -inf];
ub=[inf inf];
Aeq=[];
beq=[];
[x2,fval2,exitflag] = quadprog(H,f,A,b,Aeq, beq, lb,ub);
```

$\mathrm{x} 2=[10,8], \mathrm{f}(\mathrm{x})=-34$, exitflag=1

Example 2: Find the minimum of

$$
f(x)=-\frac{1}{2} x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-2 x_{1}-6 x_{2}
$$

subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 2 \\
-x_{1}+2 x_{2} \leq 2 \\
2 x_{1}+x_{2} \leq 3
\end{gathered}
$$

Matlab code:

```
H = [-1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb=[-inf -inf];
ub=[inf inf];
Aeq=[];
beq= [];
    [x3,fval3,exitflag] = quadprog (H,f,A,b);
eigenvalues=eig(H);
```

Solution

```
The problem is non-convex.
x =
    1.2000
    1.3750
fval =
    -11.1294
exitflag =
    -6
eigenvalues =
    -1.3028
    2.3028
```

An exit flag of -6 (negative eigenvalues) means that the problem is non-convex. As a result the solution is a local minimizer and not the global minimizer (The exitflag options are described on the website of the solver).

Plot the objective function to validate graphically that this function is not convex

```
%% Non-convex function
for i=1:length(x1)
    for j=1:length(x2)
            z(i,j)=-0.5*x1(i)^2+x2(j)^2-x1(i)*x2(j)-2*x1(i)-6*x2(j);
    end
end
figure(2)
    surf(x1,x2,z)
    grid on;
    xlabel('x1');
        ylabel('x2');
            zlabel('z');
            title('Non-convex function: f(x1,x2)=-0.5\times1^2+\times2^2-x1\times2-2\times1-6\times2');
```


Example 3: Consider a linear regression problem of the form:

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}
$$

Using as cost function the sum of the squared error estimate the parameters $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ for the noisy dataset data11.mat and plot (a) the noisy data and (b) the estimated model.

Least-Squares Fitting: Fitting requires a parametric model that relates the response data to the predictor data which depend on one or more coefficients. The result of the fitting process is an estimate of the model coefficients. To obtain the estimated coefficients, the least-squares method minimizes the cumulative square of residuals. The residual for the $\mathrm{i}^{\text {th }}$ data point r_{i} is defined as the difference between the observed value y_{i} and the fitted value \widehat{y}_{i}, and it is identified as the error associated with the data, that is

$$
r_{i}=y_{i}-\widehat{y_{l}}
$$

The cumulative square of the residuals is given by

$$
S=\sum_{i=1}^{n} r_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\widehat{y_{l}}\right)^{2}
$$

where n is the number of data points included in the fit and S is the sum of the squared errors. Linear Least-Squares: A linear model is defined as a model that is linear in the coefficients. For example polynomials are linear. To illustrate the linear least-squares fitting process, suppose you have n data points that can be modeled by a first-degree polynomial, that is

$$
\begin{gathered}
\widehat{y_{l}}=p_{1} x_{i}+p_{2} \\
S=\sum_{i=1}^{n}\left(y_{i}-\left(p_{1} x_{i}+p_{2}\right)\right)^{2}
\end{gathered}
$$

Solution: Objective function:

$$
\min S=\sum_{i=1}^{N}\left(Y_{i}-\left(a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+a_{3} x_{i}^{3}+a_{4} x_{i}^{4}\right)\right)^{2}
$$

where x_{i} and Y_{i} are the points of the observed response and are known. $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ are the parameters of the polynomial and are variables of this optimization problem.

Reformulation:

$$
\min S=\sum_{i=1}^{N}\left(t_{i}\right)^{2}
$$

subject to:

$$
Y_{i}-\left(a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+a_{3} x_{i}^{3}+a_{4} x_{i}^{4}\right)=t_{i} \quad \forall i \in N
$$

or

$$
-t_{i}-a_{0}-a_{1} x_{i}-a_{2} x_{i}^{2}-a_{3} x_{i}^{3}-a_{4} x_{i}^{4}=-Y_{i} \quad \forall i \in N
$$

where t_{i} are new variables. There are $N+5$ variables and N constraints where N is the total number of points. The resulting formulation is a quadratic program (quadratic objective with linear constraints).

Matlab code:

```
clear all;
clc;
```



```
%read the data
datall_struct=load('datall');
data_x=datall_struct.x';
data_y=datall_struct.y';
N=length(data_x); %length of the points
%variables: tl,t2\ldots..tN, +a0+al+a2+a3+a4 (N=5)
%% *************************************************
%Set the objective function
%Hessian matrix
    H=zeros(N+5,N+5);
for i=1:N
        H(i,i)=2;
    end
    f=zeros(1,N+5); %There are no linear terms
    %% ***************************************************
    %Set the bounds
        lb=ones (1,N+5)*inf*-1;
        ub=ones (1,N+5)*inf;
    %% ***********************************************
    %There are no inequality constraints
        A=[];
    b=[] ;
        &% *********************************************
    %equality constraints
        Aeq=zeros(N,N+5); %N constraints with N+5 variables
        for i=1:N
            Aeq(i,i)=-1;
            Aeq(i,N+1)= -1;
            Aeq(i,N+2)= -data_x(i);
            Aeq(i,N+3)= -data_x(i)^2;
            Aeq(i,N+4)= -data_x(i)^3;
            Aeq(i,N+5)= -data_x(i)^4;
        end
    for i=1:N
        beq(i)=-1*data_y(i);
    end
```

 \%call the solver
 \(\mathrm{x}=\) quadprog \((\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b}\), Aeq, beq, \(\mathrm{lb}, \mathrm{ub})\);
 \%values of the coefficients
 a0_var=x (N+1) ;
 a1_var=x \((\mathbb{N}+2)\);
 a2_var=x \((N+3)\);
 a3_var=x \((N+4)\);
 a4_var=x \((N+5)\);
 \%estimated output
 for \(i=1: N\)
 Y.estimated (i)=a0_var+al_var*data_x(i) +a2_var*data_x(i)^2 +a3_var*data_x(i)^3 +a4_var*data_x(i)^4;
 end;
\%plots
figure (1)
plot(data_x, data_y, 'b')
hold on;
plot (data_x, Y_estimated, 'r')
legend('Observed response ','Fitted response ')

Solution:

Homework: Consider a power system with the following eight committed units:
1 GT unit: $\quad C(P)=710+60 P+0.37 P^{2} € / \mathrm{h}, \quad 5 \leq P \leq 30 M W$
3 ST units: $\quad \mathrm{C}(\mathrm{P})=670+40 P+0.4 P^{2} € / \mathrm{h}, \quad 25 \leq P \leq 70 \mathrm{MW}$
2 ICE units: $\quad \mathrm{C}(\mathrm{P})=150+38 P+0.28 P^{2} \quad € / \mathrm{h}, \quad 7 \leq P \leq 28 M W$
2 ST units: $\quad C(P)=870+37 P+0.18 P^{2} € / \mathrm{h}, \quad 50 \leq P \leq 140 M W$
Find the produced power (P) of each generating unit to minimize the total operational cost of the system, while satisfying the power balance and the generation constraints. Solve the problem for load demand= 418 MW , and for load demand= 86.9 MW .

