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Quadratic programming:  Quadratic programming is a class of non-linear optimization 

problems in which the objective function is quadratic, the constraints are linear, and all the 

variables are continuous, x ∈ Rn 

minimize   (
1

2
) 𝒙𝑇𝑷𝒙 + 𝒄𝑇𝒙 + 𝑟 

subject to          𝒂𝑗
𝑇𝒙 ≤ 𝑏𝑗 , 𝑗 = 1, … , 𝐽 

                            �̂�𝑖
𝑇𝒙 = �̂�𝑖 , 𝑖 = 1, … , 𝐼 

where P is the Hessian matrix of the objective function, denoting the coefficients of the quadratic term; 

vector 𝒄 ∈ 𝑹𝒏 denotes the coefficients of the linear term and 𝑟 ∈ 𝑹 is a constant. QP programs are 

convex when the objective function is convex which is true when 𝑷 ∈ 𝑺+
𝒏  , where 𝑺+

𝒏  is the set of 

symmetric positive semidefinite matrices. Convex QP programs can be solved efficiently using interior-

point methods 

An example of convex and non-convex functions is demonstrated in Figure 1.1. 

 

 



Example 1 (a):  Find the minimum of  

𝑓(𝑥) =
1

2
𝑥1

2 + 𝑥2
2 − 𝑥1𝑥2 − 2𝑥1 − 6𝑥2 

Subject to 

𝑥1 + 𝑥2 ≤ 2 

−𝑥1 + 2𝑥2 ≤ 2 

2𝑥1 + 𝑥2 ≤ 3 

Solve the problem using the Matlab optimization solver quadprog 

(https://www.mathworks.com/help/optim/ug/quadprog.html) 

 

Solution:  In quadprog syntax, this problem is to minimize 

𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥 + 𝑙𝑇𝑥 

with 

𝐻 = [
1 −1

−1 2
]   : Hessian matrix of 𝑓 

𝑙 = [
−2
−6

]  : Coefficients of the linear terms 

 

 

 

 

 

 

 

 

https://www.mathworks.com/help/optim/ug/quadprog.html


Note: The Hessian matrix of a function 𝑓: ℝ𝑛 → ℝ is 

 

 

Matlab code: 

 

Examine the final point, function value (fvall), and exit flag: 

x1=[0.6667, 1.3333],  f(x)=-8.22,  exitflag=1 

 

An exit flag of 1 means the result is a local minimizer. Because H is a positive definite matrix, 

this problem is convex, so the minimizer is a global minimizer. Confirm that H is positive 

definite by checking its eigenvalues: 

eig(H)=[0.38; 2.61] 

 

 

 

 

 



 

Plot the objective function to validate graphically that this function is convex 

 

 

 

 

 



 

Example 1 (b): For Example 1 (a), compute the unconstrained global minimizer. 

 

x2=[10, 8],  f(x)=-34,  exitflag=1 

 

 

Example 2:  Find the minimum of  

𝑓(𝑥) = −
1

2
𝑥1

2 + 𝑥2
2 − 𝑥1𝑥2 − 2𝑥1 − 6𝑥2 

subject to 

𝑥1 + 𝑥2 ≤ 2 

−𝑥1 + 2𝑥2 ≤ 2 

2𝑥1 + 𝑥2 ≤ 3 

Matlab code: 

 

 

 



 

Solution 

 

An exit flag of -6 (negative eigenvalues) means that the problem is non-convex. As a result the 

solution is a local minimizer and not the global minimizer (The exitflag options are described on 

the website of the solver). 

Plot the objective function to validate graphically that this function is not convex 

 

 



 

 

 

 

Example 3:  Consider a linear regression problem of the form: 

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 

Using as cost function the sum of the squared error estimate the parameters 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 

for the noisy dataset data11.mat and plot (a) the noisy data and (b) the estimated model. 

Least-Squares Fitting:  Fitting requires a parametric model that relates the response data to the 

predictor data which depend on one or more coefficients. The result of the fitting process is an 

estimate of the model coefficients. To obtain the estimated coefficients, the least-squares 

method minimizes the cumulative square of residuals. The residual for the ith data point 𝑟𝑖 is 

defined as the difference between the observed value 𝑦𝑖 and the fitted value 𝑦�̂�, and it is 

identified as the error associated with the data, that is 

𝑟𝑖 = 𝑦𝑖 − 𝑦�̂� 

 

The cumulative square of the residuals is given by 

𝑆 = ∑ 𝑟𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝑦�̂�)
2

𝑛

𝑖=1

 



where 𝑛 is the number of data points included in the fit and S is the sum of the squared errors. 

Linear Least-Squares: A linear model is defined as a model that is linear in the coefficients. For 

example polynomials are linear. To illustrate the linear least-squares fitting process, suppose 

you have 𝑛 data points that can be modeled by a first-degree polynomial, that is 

𝑦�̂� = 𝑝1𝑥𝑖 + 𝑝2 

𝑆 = ∑(𝑦𝑖 − (𝑝1𝑥𝑖 + 𝑝2))2

𝑛

𝑖=1

 

 

Solution: Objective function: 

min 𝑆 =  ∑(𝑌𝑖 − (𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 + 𝑎3𝑥𝑖

3 + 𝑎4𝑥𝑖
4))

2
𝑁

𝑖=1

 

where 𝑥𝑖 and 𝑌𝑖 are the points of the observed response and are known. 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 are 

the parameters of the polynomial and are variables of this optimization problem. 

Reformulation:   

min  𝑆 =  ∑(𝑡𝑖)2

𝑁

𝑖=1

 

 

subject to: 

𝑌𝑖 − (𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 + 𝑎3𝑥𝑖

3 + 𝑎4𝑥𝑖
4) = 𝑡𝑖        ∀𝑖 ∈ 𝑁 

or 

−𝑡𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖
2 − 𝑎3𝑥𝑖

3 − 𝑎4𝑥𝑖
4 = −𝑌𝑖      ∀𝑖 ∈ 𝑁 

where ti are new variables. There are N+5 variables and N constraints where N is the total 

number of points.  The resulting formulation is a quadratic program (quadratic objective with 

linear constraints). 

 

 

 

 

 

 

 



Matlab code: 

 

Solution: 

a=[1.3257  8.438  -39.873  73.517 -34.581] 



 

 

 

Homework: Consider a power system with the following eight committed units:  

1 GT unit:       C(P) = 710 + 60𝑃 + 0.37𝑃2   €/h,    5 ≤ 𝑃 ≤ 30 𝑀𝑊 

3 ST units:       C(P) = 670 + 40𝑃 + 0.4𝑃2   €/h,    25 ≤ 𝑃 ≤ 70 𝑀𝑊 

2 ICE units:       C(P) = 150 + 38𝑃 + 0.28𝑃2   €/h,    7 ≤ 𝑃 ≤ 28 𝑀𝑊 

2 ST units:       C(P) = 870 + 37𝑃 + 0.18𝑃2  €/h,    50 ≤ 𝑃 ≤ 140 𝑀𝑊 

Find the produced power (P) of each generating unit to minimize the total operational cost of 

the system, while satisfying the power balance and the generation constraints. Solve the 

problem for load demand= 418 MW, and for load demand= 86.9 MW. 

 

 


