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Preface

This book in an introduction to the art of optimization. I have deliberately used the word
art in the title and placed an artwork in the title page to express that optimization requires
imagination, skills and vision. The artwork has been painted by my wife, Elisabetta, and
illustrates an optimization problem: one of those problems that we solve every day without
even realizing their “technical” nature. I leave it to the reader to guess what the actual
problem is. However, if you have attended my Optimization Lectures on a Friday morning
in the past 15 years, you have probably solved the problem every week.

This book is the result of the lectures I have given at Imperial College London for Un-
dergraduate, Master and Ph.D. students of all engineering departments (and also of the
Mathematics and Physics Departments). I am not an expert in optimization, in the sense
that my research activity has only seldom touched upon optimization problems, but I do
believe that understanding optimization is essential for all engineers, practitioners and for
everyday life. My research work is focused on systems and control: this is why some of
the exercises contain a systems and control perspective of optimization problems. It is not
hard to see that notions such as stationary points and equilibria, convergence and stabil-
ity, speed of convergence and convergence rate (the former from optimization, the latter
from systems and control) are fundamentally identical and one could borrow ideas and
tools from systems and control theory to understand optimization problems and design
optimization algorithms. Whenever possible, and in particular in the exercises, I have
made this connection. Clearly, there are much deeper connections and relations which I
have not discussed.

I conclude the preface with two observations. The first one is that the most difficult step
in the art of optimization is the formulation of the problem. Only problems which are
carefully formulated and in which all physical and engineering insight is captured yield
underlying optimization problems for which one can attempt to find a meaningful solution.
The second one is that optimization is a much wider art than that described in these books:
my objective is to stimulate the interest of the reader and open their eyes to a continuously
expanding body of knowledge.
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2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Optimization is the act of achieving the best possible result under given circumstances.

In design, construction, maintenance, ..., engineers have to take decisions. The goal of all
such decisions is either to minimize effort or to maximize benefit.

The effort or the benefit can be usually expressed as a function of certain design variables.
Hence, optimization is the process of finding the conditions that give the maximum or the
minimum value of a function.

It is obvious that if a point x⋆ corresponds to the minimum value of a function f(x), the
same point corresponds to the maximum value of the function −f(x). Thus, optimization
can be taken to be minimization.

There is no single method available for solving all optimization problems efficiently. Hence,
a number of methods have been developed for solving different types of problems.

Optimum seeking methods are also known as mathematical programming techniques,
which are a branch of operations research. Operations research is coarsely composed
of the following areas.

• Mathematical programming methods. These are useful in finding the minimum of a
function of several variables under a prescribed set of constraints.

• Stochastic process techniques. These are used to analyze problems which are de-
scribed by a set of random variables of known distribution.

• Statistical methods. These are used in the analysis of experimental data and in the
construction of empirical models.

These lecture notes deal mainly with the theory and applications of mathematical program-
ming methods. Mathematical programming is a vast area of mathematics and engineering.
It includes

• calculus of variations and optimal control;

• linear, quadratic and non-linear programming;

• geometric programming;

• integer programming;

• network methods (PERT);

• game theory.

The foundations of optimization can be traced back to Newton, Lagrange and Cauchy.
The development of differential methods for optimization was possible because of the
contribution of Newton and Leibnitz. The foundations of the calculus of variations were
laid by Bernoulli, Euler, Lagrange and Weierstrasse. Constrained optimization was first
studied by Lagrange and the notion of descent was introduced by Cauchy.
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Despite these early contributions, very little progress was made till the 20th century, when
computer power made the implementation of optimization procedures possible and this in
turn stimulated further research methods.

The major developments in the area of numerical methods for unconstrained optimization
have been made in the UK. These include the development of the simplex method (Dantzig,
1947), the principle of optimality (Bellman, 1957), necessary and sufficient conditions of
optimality (Kuhn and Tucker, 1951).

Optimization in its broadest sense can be applied to solve any engineering problem, e.g.

• design of aircraft for minimum weight;

• optimal (minimum time) trajectories for space missions;

• minimum weight design of structures for earthquake;

• optimal design of electric networks;

• optimal production planning, resources allocation, scheduling;

• shortest route;

• design of optimum pipeline networks;

• minimum processing time in production systems;

• optimal control.

1.2 Statement of an optimization problem

An optimization, or a mathematical programming problem can be stated as follows.

Find

x = (x1, x2, ...., xn)

which minimizes

f(x)

subject to the constraints

gj(x) ≤ 0 (1.1)

for j = 1, . . . ,m, and

lj(x) = 0 (1.2)

for j = 1, . . . , p.

The variable x is called the design vector, f(x) is the objective function, gj(x) are the
inequality constraints and lj(x) are the equality constraints. The number of variables n
and the number of constraints p + m need not be related. If p + m = 0 the problem is
called an unconstrained optimization problem.
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Figure 1.1: Feasible region in a two-dimensional design space. Only inequality constraints
are present.

1.2.1 Design vector

Any system is described by a set of quantities, some of which are viewed as variables
during the design process, and some of which are preassigned parameters or are imposed
by the environment. All the quantities that can be treated as variables are called design
or decision variables, and are collected in the design vector x.

1.2.2 Design constraints

In practice, the design variables cannot be selected arbitrarily, but have to satisfy certain
requirements. These restrictions are called design constraints. Design constraints may
represent limitation on the performance or behaviour of the system or physical limita-
tions. Consider, for example, an optimization problem with only inequality constraints,
i.e. gj(x) ≤ 0. The set of values of x that satisfy the equations gj(x) = 0 forms a hypersur-
face in the design space, which is called constraint surface. In general, if n is the number
of design variables, the constraint surface is an n− 1 dimensional surface. The constraint
surface divides the design space into two regions: one in which gj(x) < 0 and one in which
gj(x) > 0. The points x on the constraint surface satisfy the constraint critically, whereas
the points x such that gj(x) > 0, for some j, are infeasible, i.e. are unacceptable, see
Figure 1.1.

1.2.3 Objective function

The classical design procedure aims at finding an acceptable design, i.e. a design which
satisfies the constraints. In general there are several acceptable designs, and the purpose
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Figure 1.2: Design space, objective functions surfaces, and optimum point.

of the optimization is to single out the best possible design. Thus, a criterion has to be
selected for comparing different designs. This criterion, when expressed as a function of
the design variables, is known as objective function. The objective function is in general
specified by physical or economical considerations. However, the selection of an objective
function is not trivial, because what is the optimal design with respect to a certain criterion
may be unacceptable with respect to another criterion. Typically there is a trade off
performance–cost, or performance–reliability, hence the selection of the objective function
is one of the most important decisions in the whole design process. If more than one
criterion has to be satisfied we have a multiobjective optimization problem, that may
be approximately solved considering a cost function which is a weighted sum of several
objective functions.

Given an objective function f(x), the locus of all points x such that f(x) = c forms a
hypersurface. For each value of c there is a different hypersurface. The set of all these
surfaces are called objective function surfaces.

Once the objective function surfaces are drawn, together with the constraint surfaces, the
optimization problem can be easily solved, at least in the case of a two dimensional decision
space, as shown in Figure 1.2. If the number of decision variables exceeds two or three,
this graphical approach is not viable and the problem has to be solved as a mathematical
problem. Note however that more general problems have similar geometrical properties of
two or three dimensional problems.
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Figure 1.3: Electrical bridge network.

1.3 Classification of optimization problems

Optimization problem can be classified in several ways.

• Existence of constraints. An optimization problem can be classified as a constrained
or an unconstrained one, depending upon the presence or not of constraints.

• Nature of the equations. Optimization problems can be classified as linear, quadratic,
polynomial, non-linear depending upon the nature of the objective functions and the
constraints. This classification is important, because computational methods are
usually selected on the basis of such a classification, i.e. the nature of the involved
functions dictates the type of solution procedure.

• Admissible values of the design variables. Depending upon the values permitted
for the design variables, optimization problems can be classified as integer or real
valued, and deterministic or stochastic.

1.4 Examples

Example 1 A travelling salesman has to visit n towns. He plans to start from a particular
town numbered 1, visit each one of the other n− 1 towns, and return to the town 1. The
distance between town i and j is given by dij . How should he select the sequence in which
the towns are visited to minimize the total distance travelled?

Example 2 The bridge network in Figure 1.3 consists of five resistors Ri, i = 1, . . . , 5.
Let Ii be the current through the resistance Ri, find the values of Ri so that the total
dissipated power is minimum. The current Ii can vary between the lower limit Ii and the
upper limit Īi and the voltage drop Vi = RiIi must be equal to a constant ci.

Example 3 A manufacturing firm produces two products, A and B, using two limited
resources, 1 and 2. The maximum amount of resource 1 available per week is 1000 and the
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Article type wi vi ci
1 4 9 5

2 8 7 6

3 2 4 3

Table 1.1: Properties of the articles to load.

maximum amount of resource 2 is 250. The production of one unit of A requires 1 unit of
resource 1 and 1/5 unit of resource 2. The production of one unit of B requires 1/2 unit
of resource 1 and 1/2 unit of resource 2. The unit cost of resource 1 is 1−0.0005u1, where
u1 is the number of units of resource 1 used. The unit cost of resource 2 is 3/4−0.0001u2 ,
where u2 is the number of units of resource 2 used. The selling price of one unit of A is

2− 0.005xA − 0.0001xB

and the selling price of one unit of B is

4− 0.002xA − 0.01xB ,

where xA and xB are the number of units of A and B sold. Assuming that the firm is able
to sell all manufactured units, maximize the weekly profit.

Example 4 A cargo load is to be prepared for three types of articles. The weight, wi,
volume, vi, and value, ci, of each article is given in Table 1.1.
Find the number of articles xi selected from type i so that the total value of the cargo is
maximized. The total weight and volume of the cargo cannot exceed 2000 and 2500 units
respectively.

Example 5 There are two types of gas molecules in a gaseous mixture at equilibrium. It
is known that the Gibbs free energy

G(x) = c1x
1 + c2x

2 + x1log(x1/xT ) + x2log(x2/xT ),

with xT = x1 + x2 and c1, c2 known parameters depending upon the temperature and
pressure of the mixture, has to be minimum in these conditions. The minimization of
G(x) is also subject to the mass balance equations:

x1ai1 + x2ai2 = bi,

for i = 1, . . . ,m, where m is the number of atomic species in the mixture, bi is the total
weight of atoms of type i, and aij is the number of atoms of type i in the molecule of type
j. Show that the problem of determining the equilibrium of the mixture can be posed as
an optimization problem.
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2.1 Introduction

Several engineering, economic and planning problems can be posed as optimization prob-
lems, i.e. as the problem of determining the points of minimum of a function (possibly in
the presence of conditions on the decision variables). Moreover, also numerical problems,
such as the problem of solving systems of equations or inequalities, can be posed as an
optimization problem.

We start with the study of optimization problems in which the decision variables are
defined in IRn: unconstrained optimization problems. More precisely we study the problem
of determining local minimizers for differentiable functions. Although these methods are
seldom used in applications, as in real problems the decision variables are subject to
constraints, the techniques of unconstrained optimization are instrumental to solve more
general problems: the knowledge of good methods for local unconstrained minimization is
a necessary pre-requisite for the solution of constrained and global minimization problems.

The methods that will be studied can be classified from various points of view. The
most interesting classification is based on the information available on the function to be
optimized, namely

• methods without derivatives (direct search, finite differences);

• methods based on the knowledge of the first derivatives (gradient, conjugate direc-
tions, quasi-Newton);

• methods based on the knowledge of the first and second derivatives (Newton).

2.2 Definitions and existence conditions

Consider the following general optimization problem.

Problem 1 Minimize

f(x) subject to x ∈ F

in which f : IRn → IR and1 F ⊂ IRn.

With respect to this problem we introduce the following definitions.

Definition 1 A point x ∈ F is a global minimizer for the Problem 1 if

f(x) ≤ f(y)

for all y ∈ F .
A point x ∈ F is a strict (or isolated) global minimizer for the Problem 1 if

f(x) < f(y)

1The set F may be specified by equations of the form (1.1) and/or (1.2).
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for all y ∈ F and y 6= x.
A point x ∈ F is a local minimiser for the Problem 1 if there exists ρ > 0 such that

f(x) ≤ f(y)

for all y ∈ F such that ‖y − x‖ < ρ.
A point x ∈ F is a strict (or isolated) local minimizer for the Problem 1 if there exists
ρ > 0 such that

f(x) < f(y)

for all y ∈ F such that ‖y − x‖ < ρ and y 6= x.

Definition 2 If x ∈ F is a local minimizer for the Problem 1 and if x is in the interior
of F then x is an unconstrained local minimizer of f in F .

The following result provides a sufficient, but not necessary, condition for the existence of
a global minimum for Problem 1.

Proposition 1 Let f : IRn → IR be a continuous function and let F ⊂ IRn be a compact
set2. Then there exists a global minimum of f in F .

In unconstrained optimization problems the set F coincides with IRn, hence the above
statement cannot be used to establish the existence of global minima. To address the
existence problem it is necessary to consider the structure of the level sets of the function
f . See also Section 1.2.3.

Definition 3 Let f : IRn → IR. A level set of f is any non-empty set described by

L(α) = {x ∈ IRn : f(x) ≤ α},

with α ∈ IR.

For convenience, if x0 ∈ IRn we denote with L0 the level set L(f(x0)). Using the concept
of level sets it is possible to establish a simple sufficient condition for the existence of
global solutions for an unconstrained optimization problem.

Proposition 2 Let f : IRn → IR be a continuous function. Assume there exists x0 ∈ IRn

such that the level set L0 is compact. Then there exists a point of global minimum of f in
IRn.

Proof. By Proposition 1 there exists a global minimizer x⋆ of f in L0, i.e. f(x⋆) ≤ f(x) for
all x ∈ L0. However, if x 6∈ L0 then f(x) > f(x0) ≥ f(x⋆), hence x⋆ is a global minimizer
of f in IRn. ⊳

It is obvious that the structure of the level sets of the function f plays a fundamental
role in the solution of Problem 1. The following result provides a necessary and sufficient
condition for the compactness of all level sets of f .

2A compact set is a bounded and closed set.
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Proposition 3 Let f : IRn → IR be a continuous function. All level sets of f are compact
if and only if for any sequence {xk} one has

lim
k→∞

‖xk‖ = ∞ ⇒ lim
k→∞

f(xk) = ∞.

Remark. In general xk ∈ IRn, namely

xk =




x1k
x2k
...
xnk



,

i.e. we use superscripts to denote components of a vector. ⋄

A function that satisfies the condition of the above proposition is said to be radially
unbounded.

Proof. We only prove the necessity. Suppose all level sets of f are compact. Then,
proceeding by contradiction, suppose there exist a sequence {xk} such that limk→∞ ‖xk‖ =
∞ and a number γ > 0 such that f(xk) ≤ γ < ∞ for all k. As a result

{xk} ⊂ L(γ).

However, by compactness of L(γ) it is not possible that limk→∞ ‖xk‖ = ∞. ⊳

Definition 4 Let f : IRn → IR. A vector d ∈ IRn is said to be a descent direction for f
in x⋆ if there exists δ > 0 such that

f(x⋆ + λd) < f(x⋆),

for all λ ∈ (0, δ).

If the function f is differentiable it is possible to give a simple condition guaranteeing that
a certain direction is a descent direction.

Proposition 4 Let f : IRn → IR and assume3 ∇f exists and is continuous. Let x⋆ and d
be given. Then, if ∇f(x⋆)

′d < 0 the direction d is a descent direction for f at x⋆.

Proof. Note that ∇f(x⋆)
′d is the directional derivative of f (which is differentiable by

hypothesis) at x⋆ along d, i.e.

∇f(x⋆)
′d = lim

λ→0+

f(x⋆ + λd)− f(x⋆)

λ
,

3We denote with ∇f the gradient of the function f , i.e. ∇f = [ ∂f
∂x1 , · · · , ∂f

∂xn ]
′. Note that ∇f is a

column vector.
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f increasing

f(x) = f(x  )*

descent direction

anti-gradient

f(x) = f(x ) > f(x  )*1

f(x) = f(x ) > f(x )12

Figure 2.1: Geometrical interpretation of the anti-gradient.

and this is negative by hypothesis. As a result, for λ > 0 and sufficiently small

f(x⋆ + λd)− f(x⋆) < 0,

hence the claim. ⊳

The proposition establishes that if ∇f(x⋆)
′d < 0 then for sufficiently small positive dis-

placements along d and starting at x⋆ the function f is decreasing. It is also obvious that
if ∇f(x⋆)

′d > 0, d is a direction of ascent, i.e. the function f is increasing for sufficiently
small positive displacements from x⋆ along d. If ∇f(x⋆)

′d = 0, d is orthogonal to ∇f(x⋆)
and it is not possible to establish, without further knowledge on the function f , what is
the nature of the direction d.

From a geometrical point of view (see also Figure 2.1), the sign of the directional derivative
∇f(x⋆)

′d gives information on the angle between d and the direction of the gradient at
x⋆, provided ∇f(x⋆) 6= 0. If ∇f(x⋆)

′d > 0 the angle between ∇f(x⋆) and d is acute. If
∇f(x⋆)

′d < 0 the angle between ∇f(x⋆) and d is obtuse. Finally, if ∇f(x⋆)
′d = 0, and

∇f(x⋆) 6= 0, ∇f(x⋆) and d are orthogonal. Note that the gradient ∇f(x⋆), if it is not
identically zero, is a direction orthogonal to the level surface {x : f(x) = f(x⋆)} and it is
a direction of ascent, hence the anti-gradient −∇f(x⋆) is a descent direction.

Remark. The scalar product x′y between the two vectors x and y can be used to define
the angle between x and y. For, define the angle between x and y as the number θ ∈ [0, π]
such that4

cos θ =
x′y

‖x‖E‖y‖E
.

If x′y = 0 one has cos θ = 0 and the vectors are orthogonal, whereas if x and y have the
same direction, i.e. x = λy with λ > 0, cos θ = 1. ⋄

4‖x‖E denotes the Euclidean norm of the the vector x, i.e. ‖x‖E =
√
x′x.
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We are now ready to state and prove some necessary conditions and some sufficient con-
ditions for a local minimizer.

Theorem 1 [First order necessary condition] Let f : IRn → IR and assume ∇f exists and
is continuous. The point x⋆ is a local minimizer of f only if

∇f(x⋆) = 0.

Remark. A point x⋆ such that ∇f(x⋆) = 0 is called a stationary point of f . ⋄

Proof. If ∇f(x⋆) 6= 0 the direction d = −∇f(x⋆) is a descent direction. Therefore, in a
neighborhood of x⋆ there is a point x⋆ + λd = x⋆ − λ∇f(x⋆) such that

f(x⋆ − λ∇f(x⋆)) < f(x⋆),

and this contradicts the hypothesis that x⋆ is a local minimizer. ⊳

Theorem 2 [Second order necessary condition] Let f : IRn → IR and assume5 ∇2f exists
and is continuous. The point x⋆ is a local minimizer of f only if

∇f(x⋆) = 0

and
x′∇2f(x⋆)x ≥ 0

for all x ∈ IRn.

Proof. The first condition is a consequence of Theorem 1. Note now that, as f is two
times differentiable, for any x 6= x⋆ one has

f(x⋆ + λx) = f(x⋆) + λ∇f(x⋆)
′x+

1

2
λ2x′∇2f(x⋆)x+ β(x⋆, λx),

where

lim
λ→0

β(x⋆, λx)

λ2‖x‖2
= 0,

or what is the same (note that x is fixed)

lim
λ→0

β(x⋆, λx)

λ2
= 0.

5We denote with ∇2f the Hessian matrix of the function f , i.e.



∂2f
∂x1∂x1 · · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1 · · · ∂2f
∂xn∂xn


 .

Note that ∇2f is a square matrix and that, under suitable regularity conditions, the Hessian matrix is
symmetric.
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Moreover, the condition ∇f(x⋆) = 0 yields

f(x⋆ + λx)− f(x⋆)

λ2
=

1

2
x′∇2f(x⋆)x+

β(x⋆, λx)

λ2
. (2.1)

However, as x⋆ is a local minimizer, the left hand side of equation (2.1) must be non-
negative for all λ sufficiently small, hence

1

2
x′∇2f(x⋆)x+

β(x⋆, λx)

λ2
≥ 0,

and

lim
λ→0

(
1

2
x′∇2f(x⋆)x+

β(x⋆, λx)

λ2

)
=

1

2
x′∇2f(x⋆)x ≥ 0,

which proves the second condition. ⊳

Theorem 3 [Second order sufficient condition] Let f : IRn → IR and assume ∇2f exists
and is continuous. The point x⋆ is a strict local minimizer of f if

∇f(x⋆) = 0

and
x′∇2f(x⋆)x > 0

for all non-zero x ∈ IRn.

Proof. To begin with, note that as ∇2f(x⋆) > 0 and ∇2f is continuous, then there is a
neighborhood Ω of x⋆ such that for all y ∈ Ω

∇2f(y) > 0.

Consider now the Taylor series expansion of f around the point x⋆, i.e.

f(y) = f(x⋆) +∇f(x⋆)
′(y − x⋆) +

1

2
(y − x⋆)

′∇2f(ξ)(y − x⋆),

where ξ = x⋆ + θ(y − x⋆), for some θ ∈ [0, 1]. By the first condition one has

f(y) = f(x⋆) +
1

2
(y − x⋆)

′∇2f(ξ)(y − x⋆),

and, for any y ∈ Ω such that y 6= x⋆,

f(y) > f(x⋆),

which proves the claim. ⊳

The above results can be easily modified to derive necessary conditions and sufficient con-
ditions for a local maximizer. Moreover, if x⋆ is a stationary point and the Hessian matrix
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Figure 2.2: A saddle point in IR2.

∇2f(x⋆) is indefinite, the point x⋆ is neither a local minimizer neither a local maximizer.
Such a point is called a saddle point (see Figure 2.2 for a geometrical illustration).

If x⋆ is a stationary point and ∇2f(x⋆) is semi-definite it is not possible to draw any
conclusion on the point x⋆ without further knowledge on the function f . Nevertheless, if
n = 1 and the function f is infinitely times differentiable it is possible to establish the
following necessary and sufficient condition.

Proposition 5 Let f : IR → IR and assume f is infinitely times differentiable. The point
x⋆ is a local minimizer if and only if there exists an even integer r > 1 such that

dkf(x⋆)

dxk
= 0

for k = 1, 2, . . . , r − 1 and

drf(x⋆)

dxr
> 0.

Necessary and sufficient conditions for n > 1 can be only derived if further hypotheses on
the function f are added, as shown for example in the following fact.

Proposition 6 [Necessary and sufficient condition for convex functions] Let f : IRn → IR
and assume ∇f exists and it is continuous. Suppose f is convex, i.e.

f(y)− f(x) ≥ ∇f(x)′(y − x) (2.2)

for all x ∈ IRn and y ∈ IRn. The point x⋆ is a global minimizer if and only if ∇f(x⋆) = 0.
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Remark. The convexity condition (2.2) can be rewritten as

f(y) ≥ f(x) +∇f(x)′(y − x).

This reveals that the tangent plane for f at x is always below the graph of the function,
i.e. the function is supported from below by the tangent planes. ⋄

Proof. The necessity is a consequence of Theorem 1. For the sufficiency note that, by
equation (2.2), if ∇f(x⋆) = 0 then

f(y) ≥ f(x⋆),

for all y ∈ IRn. ⊳

From the above discussion it is clear that to establish the property that x⋆, satisfying
∇f(x⋆) = 0, is a global minimizer it is enough to assume that the function f has the
following property: for all x and y such that

∇f(x)′(y − x) ≥ 0

one has

f(y) ≥ f(x).

A function f satisfying the above property is said pseudo-convex. Note that a differentiable
convex function is also pseudo-convex, but the opposite is not true. For example, the
function x + x3 is pseudo-convex but it is not convex. Finally, if f is strictly convex or
strictly pseudo-convex the global minimizer (if it exists) is also unique.

2.3 General properties of minimization algorithms

Consider the problem of minimizing the function f : IRn → IR and suppose that ∇f and
∇2f exist and are continuous. Suppose that such a problem has a solution, and moreover
that there exists x0 such that the level set

L(f(x0)) = {x ∈ IRn : f(x) ≤ f(x0)}

is compact.

General unconstrained minimization algorithms allow only to determine stationary points
of f , i.e. to determine points in the set

Ω = {x ∈ IRn : ∇f(x) = 0}.

Moreover, for almost all algorithms, it is possible to exclude that the points of Ω yielded
by the algorithm are local maximizer. Finally, some algorithms yield points of Ω that
satisfy also the second order necessary conditions.
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2.3.1 General unconstrained minimization algorithm

An algorithm for the solution of the considered minimization problem is a sequence {xk},
obtained starting from an initial point x0, having some convergence properties in relation
with the set Ω. Most of the algorithms that will be studied in these notes can be described
in the following general way.

a) Fix a point x0 ∈ IRn and set k = 0.

b) If xk ∈ Ω STOP.

c) Compute a direction of research dk ∈ IRn.

d) Compute a step αk ∈ IR along dk.

e) Let xk+1 = xk + αkdk. Set k = k + 1 and go back to 2.

The existing algorithms differ in the way the direction of research dk is computed and
on the criteria used to compute the step αk. However, independently from the particular
selection, it is important to study the following issues:

• the existence of accumulation points for the sequence {xk};

• the behavior of such accumulation points in relation with the set Ω;

• the speed of convergence of the sequence {xk} to the points of Ω.

2.3.2 Existence of accumulation points

To make sure that any subsequence of {xk} has an accumulation point it is necessary to
assume that the sequence {xk} remains bounded, i.e. that there exists M > 0 such that
‖xk‖ < M for any k. If the level set L(f(x0)) is compact, the above condition holds if
{xk} ∈ L(f(x0)). This property, in turn, is guaranteed if

f(xk+1) < f(xk),

for any k such that xk 6∈ Ω. The algorithms that satisfy this property are denominated
descent methods. For such methods , if L(f(x0)) is compact and if ∇f is continuous one
has

• {xk} ∈ L(f(x0)) and any subsequence of {xk} admits a subsequence converging to
a point of L(f(x0));

• the sequence {f(xk)} has a limit, i.e. there exists f̄ ∈ IR such that

lim
k→∞

f(xk) = f̄ ;

• there always exists an element of Ω in L(f(x0)). In fact, as f has a minimizer in
L(f(x0)), this minimizer is also a minimizer of f in IRn. Hence, by the assumptions
of ∇f , such a minimizer must be a point of Ω.
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Remark. To guarantee the descent property it is necessary that the research directions dk
be directions of descent. This is true if

∇f(xk)
′dk < 0,

for all k. Under this condition there exists an interval (0, α⋆] such that

f(xk + αdk) < f(xk),

for any α ∈ (0, α⋆]. ⋄

Remark. The existence of accumulation points for the sequence {xk} and the convergence
of the sequence {f(xk)} do not guarantee that the accumulation points of {xk} are local
minimizers of f or stationary points. To obtain this property it is necessary to impose
further restrictions on the research directions dk and on the steps αk. ⋄

2.3.3 Condition of angle

The condition which is in general imposed on the research directions dk is the so-called
condition of angle, that can be stated as follows.

Condition 1 There exists ǫ > 0, independent from k, such that

∇f(xk)
′dk ≤ −ǫ‖∇f(xk)‖‖dk‖,

for any k.

From a geometric point of view the above condition implies that the cosine of the angle
between dk and −∇f(xk) is larger than a certain quantity. This condition is imposed to
avoid that, for some k, the research direction is orthogonal to the direction of the gradient.
Note moreover that, if the angle condition holds, and if ∇f(xk) 6= 0 then dk is a descent
direction. Finally, if ∇f(xk) 6= 0, it is always possible to find a direction dk such that the
angle condition holds. For example, the direction dk = −∇f(xk) is such that the angle
condition is satisfied with ǫ = 1.

Remark. Let {Bk} be a sequence of matrices such that

mI ≤ Bk ≤ MI,

for some 0 < m < M , and for any k, and consider the directions

dk = −Bk∇f(xk).

Then a simple computation shows that the angle condition holds with ǫ = m/M . ⋄

The angle condition imposes a constraint only on the research directions dk. To make
sure that the sequence {xk} converges to a point in Ω it is necessary to impose further
conditions on the step αk, as expressed in the following statements.
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Theorem 4 Let {xk} be the sequence obtained by the algorithm

xk+1 = xk + αkdk,

for k ≥ 0. Assume that

(H1) ∇f is continuous and the level set L(f(x0)) is compact.

(H2) There exists ǫ > 0 such that

∇f(xk)
′dk ≤ −ǫ‖∇f(xk)‖‖dk‖,

for any k ≥ 0.

(H3) f(xk+1) < f(xk) for any k ≥ 0.

(H4) The property

lim
k→∞

∇f(xk)
′dk

‖dk‖
= 0

holds.

Then

(C1) {xk} ∈ L(f(x0)) and any subsequence of {xk} has an accumulation point.

(C2) {f(xk)} is monotonically decreasing and there exists f̄ such that

lim
k→∞

f(xk) = f̄ .

(C3) {∇f(xk)} is such that
lim
k→∞

‖∇f(xk)‖ = 0.

(C4) Any accumulation point x̄ of {xk} is such that ∇f(x̄) = 0.

Proof. Conditions (C1) and (C2) are a simple consequence of (H1) and (H3). Note now
that (H2) implies

ǫ‖∇f(xk)‖ ≤
|∇f(xk)

′dk|

‖dk‖
,

for all k. As a result, and by (H4),

lim
k→∞

ǫ‖∇f(xk)‖ ≤ lim
k→∞

|∇f(xk)
′dk|

‖dk‖
= 0

hence (C3) holds. Finally, let x̄ be an accumulation point of the sequence {xk}, i.e. there
is a subsequence that converges to x̄. For such a subsequence, and by continuity of f , one
has

lim
k→∞

∇f(xk) = ∇f(x̄),
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and, by (C3),
∇f(x̄) = 0,

which proves (C4). ⊳

Remark. Theorem 4 does not guarantee the convergence of the sequence {xk} to a unique
accumulation point. Obviously {xk} has a unique accumulation point if either Ω∩L(f(x0))
contains only one point or x, y ∈ Ω ∩ L(f(x0)), with x 6= y implies f(x) 6= f(y). Finally,
if the set Ω ∩ L(f(x0)) contains a finite number of points, a sufficient condition for the
existence of a unique accumulation point is

lim
k→∞

‖xk+1 − xk‖ = 0.

⋄

Remark. The angle condition can be replaced by the following one. There exists η > 0
and q > 0, both independent from k, such that

∇f(xk)
′dk ≤ −η‖∇f(xk)‖

q‖dk‖.

⋄

The result illustrated in Theorem 4 requires the fulfillment of the angle condition or of a
similar one, i.e. of a condition involving ∇f . In many algorithms that do not make use
of the gradient it may be difficult to check the validity of the angle condition, hence it is
necessary to use different conditions on the research directions. For example, it is possible
to replace the angle condition with a property of linear independence of the research
directions.

Theorem 5 Let {xk} be the sequence obtained by the algorithm

xk+1 = xk + αkdk,

for k ≥ 0. Assume that

• ∇2f is continuous and the level set L(f(x0)) is compact.

• There exist σ > 0, independent from k, and k0 > 0 such that, for any k ≥ k0 the
matrix Pk composed of the columns

dk
‖dk‖

,
dk+1

‖dk+1‖
, . . . ,

dk+n−1

‖dk+n−1‖
,

is such that
|detPk| ≥ σ.

• limk→∞ ‖xk+1 − xk‖ = 0.
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• f(xk+1) < f(xk) for any k ≥ 0.

• The property

lim
k→∞

∇f(xk)
′dk

‖dk‖
= 0

holds.

Then

• {xk} ∈ L(f(x0)) and any subsequence of {xk} has an accumulation point.

• {f(xk)} is monotonically decreasing and there exists f̄ such that

lim
k→∞

f(xk) = f̄ .

• Any accumulation point x̄ of {xk} is such that ∇f(x̄) = 0.

Moreover, if the set Ω ∩ L(f(x0)) is composed of a finite number of points, the sequence
{xk} has a unique accumulation point.

2.3.4 Speed of convergence

Together with the property of convergence of the sequence {xk} it is important to study
also the speed of convergence. To study such a notion it is convenient to assume that {xk}
converges to a point x⋆.

If there exists a finite k such that xk = x⋆ then we say that the sequence {xk} has finite
convergence. Note that if {xk} is generated by an algorithm, there is a stopping condition
that has to be satisfied at step k.

If xk 6= x⋆ for any finite k, it is possible (and convenient) to study the asymptotic properties
of {xk}. One criterion to estimate the speed of convergence is based on the behavior of
the error Ek = ‖xk − x⋆‖, and in particular on the relation between Ek+1 and Ek.
We say that {xk} has speed of convergence of order p if

lim
k→∞

(
Ek+1

Ep
k

)
= Cp

with p ≥ 1 and 0 < Cp < ∞. Note that if {xk} has speed of convergence of order p then

lim
k→∞

(
Ek+1

Eq
k

)
= 0,

if 1 ≤ q < p, and

lim
k→∞

(
Ek+1

Eq
k

)
= ∞,
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if q > p. Moreover, from the definition of speed of convergence, it is easy to see that if
{xk} has speed of convergence of order p then, for any ǫ > 0 there exists k0 such that

Ek+1 ≤ (Cp + ǫ)Ep
k ,

for any k > k0.
In the cases p = 1 or p = 2 the following terminology is often used. If p = 1 and 0 < C1 ≤ 1
the speed of convergence is linear; if p = 1 and C1 > 1 the speed of convergence is sublinear;
if

lim
k→∞

(
Ek+1

Ek

)
= 0

the speed of convergence is superlinear, and finally if p = 2 the speed of convergence is
quadratic.
Of special interest in optimization is the case of superlinear convergence, as this is the kind
of convergence that can be established for the efficient minimization algorithms. Note that
if xk has superlinear convergence to x⋆ then

lim
k→∞

‖xk+1 − xk‖

‖xk − x⋆‖
= 1.

Remark. In some cases it is not possible to establish the existence of the limit

lim
k→∞

(
Ek+1

Eq
k

)
.

In these cases an estimate of the speed of convergence is given by

Qp = lim sup
k→∞

(
Ek+1

Eq
k

)
.

⋄

2.4 Line search

A line search is a method to compute the step αk along a given direction dk. The choice
of αk affects both the convergence and the speed of convergence of the algorithm. In any
line search one considers the function of one variable φ : IR → IR defined as

φ(α) = f(xk + αdk)− f(xk).

The derivative of φ(α) with respect to α is given by

φ̇(α) = ∇f(xk + αdk)
′dk

provided that ∇f is continuous. Note that ∇f(xk + αdk)
′dk describes the slope of the

tangent to the function φ(α), and in particular

φ̇(0) = ∇f(xk)
′dk
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coincides with the directional derivative of f at xk along dk.
From the general convergence results described, we conclude that the line search has to
enforce the following conditions

f(xk+1) < f(xk)

lim
k→∞

∇f(xk)
′dk

‖dk‖
= 0

and, whenever possible, also the condition

lim
k→∞

‖xk+1 − xk‖ = 0.

To begin with, we assume that the directions dk are such that

∇f(xk)
′dk < 0

for all k, i.e. dk is a descent direction, and that it is possible to compute, for any fixed x,
both f and ∇f . Finally, we assume that the level set L(f(x0)) is compact.

2.4.1 Exact line search

The exact line search consists in finding αk such that

φ(αk) = f(xk + αkdk)− f(xk) ≤ f(xk + αdk)− f(xk) = φ(α)

for any α ≥ 0. Note that, as dk is a descent direction and the set

{α ∈ IR+ : φ(α) ≤ φ(0)}

is compact, because of compactness of L(f(x0)), there exists an αk that minimizes φ(α).
Moreover, for such αk one has

φ̇(αk) = ∇f(xk + αkdk)
′dk = 0,

i.e. if αk minimizes φ(α) the gradient of f at xk + αkdk is orthogonal to the direction dk.
From a geometrical point of view, if αk minimizes φ(α) then the level surface of f through
the point xk + αkdk is tangent to the direction dk at such a point. (If there are several
points of tangency, αk is the one for which f has the smallest value).
The search of αk that minimizes φ(α) is very expensive, especially if f is not convex. More-
over, in general, the whole minimization algorithm does not gain any special advantage
from the knowledge of such optimal αk. It is therefore more convenient to use approximate
methods, i.e. methods which are computationally simple and which guarantee particular
convergence properties. Such methods are aimed at finding an interval of acceptable values
for αk subject to the following two conditions

• αk has to guarantee a sufficient reduction of f ;

• αk has to be sufficiently distant from 0, i.e. xk + αkdk has to be sufficiently away
from xk.
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Figure 2.3: Geometrical interpretation of Armijo method.

2.4.2 Armijo method

Armijo method was the first non-exact line search method. Let a > 0, σ ∈ (0, 1) and
γ ∈ (0, 1/2) be given and define the set of points

A = {α ∈ R : α = aσj , j = 0, 1, . . .}.

Armijo method consists in finding the largest α ∈ A such that

φ(α) = f(xk + αdk)− f(xk) ≤ γα∇f(xk)
′dk = γαφ̇(0).

Armijo method can be implemented using the following (conceptual) algorithm.

Step 1. Set α = a.

Step 2. If
f(xk + αdk)− f(xk) ≤ γα∇f(xk)

′dk

set αk = α and STOP. Else go to Step 3.

Step 3. Set α = σα, and go to Step 2.

From a geometric point of view (see Figure 2.3) the condition in Step 2 requires that αk

is such that φ(αk) is below the straight line passing through the point (0, φ(0)) and with
slope γφ̇(0). Note that, as γ ∈ (0, 1/2) and φ̇(0) < 0, such a straight line has a slope
smaller than the slope of the tangent at the curve φ(α) at the point (0, φ(0)).
For Armijo method it is possible to prove the following convergence result.

Theorem 6 Let f : IRn → IR and assume ∇f is continuous and L(f(x0)) is compact.
Assume ∇f(xk)

′dk < 0 for all k and there exist C1 > 0 and C2 > 0 such that

C1 ≥ ‖dk‖ ≥ C2‖∇f(xk)‖
q,
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for some q > 0 and for all k.

Then Armijo method yields in a finite number of iterations a value of αk > 0 satisfying
the condition in Step 2. Moreover, the sequence obtained setting xk+1 = xk + αkdk is
such that

f(xk+1) < f(xk),

for all k, and

lim
k→∞

∇f(xk)
′dk

‖dk‖
= 0.

Proof. We only prove that the method cannot loop indefinitely between Step 2 and
Step 3. In fact, if this is the case, then the condition in Step 2 will never be satisfied,
hence

f(xk + aσjdk)− f(xk)

aσj
> γ∇f(xk)

′dk.

Note now that σj → 0 as j → ∞, and the above inequality for j → ∞ is

∇f(xk)
′dk > γ∇f(xk)

′dk,

which is not possible since γ ∈ (0, 1/2) and ∇f(xk)
′dk 6= 0. ⊳

Remark. It is interesting to observe that in Theorem 6 it is not necessary to assume that
xk+1 = xk + αkdk. It is enough that xk+1 is such that

f(xk+1) ≤ f(xk + αkdk),

where αk is generated using Armijo method. This implies that all acceptable values of α
are those such that

f(xk + αdk) ≤ f(xk + αkdk).

As a result, Theorem 6 can be used to prove also the convergence of an algorithm based
on the exact line search. ⋄

2.4.3 Goldstein conditions

The main disadvantage of Armijo method is in the fact that, to find αk, all points in the
set A, starting from the point α = a, have to be tested till the condition in Step 2 is
fulfilled. There are variations of the method that do not suffer from this disadvantage. A
criterion similar to Armijo’s, but that allows to find an acceptable αk in one step, is based
on the so-called Goldstein conditions.

Goldstein conditions state that given γ1 ∈ (0, 1) and γ2 ∈ (0, 1) such that γ1 < γ2, αk is
any positive number such that

f(xk + αkdk)− f(xk) ≤ αkγ1∇f(xk)
′dk



2.4. LINE SEARCH 27

α

φ(α)

φ(0)

φ(0)α
.

γ φ(0)α
.

1

α

γ φ(0)α
.

2

α

Figure 2.4: Geometrical interpretation of Goldstein method.

i.e. there is a sufficient reduction in f , and

f(xk + αkdk)− f(xk) ≥ αkγ2∇f(xk)
′dk

i.e. there is a sufficient distance between xk and xk+1.

From a geometric point of view (see Figure 2.4) this is equivalent to select αk as any point
such that the corresponding value of f is included between two straight lines, of slope
γ1∇f(xk)

′dk and γ2∇f(xk)
′dk, respectively, and passing through the point (0, φ(0)). As

0 < γ1 < γ2 < 1 it is obvious that there exists always an interval I = [α,α] such that
Goldstein conditions hold for any α ∈ I.

Note that, a result similar to Theorem 6, can be also established if the sequence {xk} is
generated using Goldstein conditions.

The main disadvantage of Armijo and Goldstein methods is in the fact that none of
them impose conditions on the derivative of the function φ(α) in the point αk, or what
is the same on the value of ∇f(xk+1)

′dk. Such extra conditions are sometimes useful
in establishing convergence results for particular algorithms. However, for simplicity, we
omit the discussion of these more general conditions (known as Wolfe conditions).

2.4.4 Line search without derivatives

It is possible to construct methods similar to Armijo’s or Goldstein’s also in the case that
no information on the derivatives of the function f is available.

Suppose, for simplicity, that ‖dk‖ = 1, for all k, and that the sequence {xk} is generated
by

xk+1 = xk + αkdk.

If ∇f is not available it is not possible to decide a priori if the direction dk is a descent
direction, hence it is necessary to consider also negative values of α.
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We now describe the simplest line search method that can be constructed with the con-
sidered hypothesis. This method is a modification of Armijo method and it is known as
parabolic search.
Given λ0 > 0, σ ∈ (0, 1/2), γ > 0 and ρ ∈ (0, 1). Compute αk and λk such that one of the
following conditions hold.

Condition (i)

• λk = λk−1;

• αk is the largest value in the set

A = {α ∈ IR : α = ±σj, j = 0, 1, . . .}

such that
f(xk + αkdk) ≤ f(xk)− γα2

k,

or, equivalently, φ(αk) ≤ −γα2
k.

Condition (ii)

• αk = 0, λk ≤ ρλk−1;

• min (f(xk + λkdk), f(xk − λkdk)) ≥ f(xk)− γλ2
k.

At each step it is necessary to satisfy either Condition (i) or Condition (ii). Note that this
is always possible for any dk 6= 0. Condition (i) requires that αk is the largest number
in the set A such that f(xk + αkdk) is below the parabola f(xk) − γα2. If the function
φ(α) has a stationary point for α = 0 then there may be no α ∈ A such that Condition (i)
holds. However, in this case it is possible to find λk such that Condition (ii) holds. If
Condition (ii) holds then αk = 0, i.e. the point xk remains unchanged and the algorithms
continues with a new direction dk+1 6= dk.
For the parabolic search algorithm it is possible to prove the following convergence result.

Theorem 7 Let f : IRn → IR and assume ∇f is continuous and L(f(x0)) is compact.
If αk is selected following the conditions of the parabolic search and if xk+1 = xk + αkdk,
with ‖dk‖ = 1 then the sequence {xk} is such that

f(xk+1) ≤ f(xk)

for all k,
lim
k→∞

∇f(xk)
′dk = 0

and
lim
k→∞

‖xk+1 − xk‖ = 0.

Proof. (Sketch) Note that Condition (i) implies f(xk+1) < f(xk), whereas Condition (ii)
implies f(xk+1) = f(xk). Note now that if Condition (ii) holds for all k ≥ k̄, then αk = 0
for all k ≥ k̄, i.e. ‖xk+1 − xk‖ = 0. Moreover, as λk is reduced at each step, necessarily
∇f(xk̄)

′d̄ = 0, where d̄ is a limit of the sequence {dk}. ⊳
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2.4.5 Implementation of a line search algorithm

On the basis of the conditions described so far it is possible to construct algorithms that
yield αk in a finite number of steps. One such an algorithm can be described as follows.
(For simplicity we assume that ∇f is known.)

• Initial data. xk, f(xk), ∇f(xk), α and α.

• Initial guess for α. A possibility is to select α as the point in which a parabola
through (0, φ(0)) with derivative φ̇(0) for α = 0 takes a pre-specified minimum value
f⋆. Initially, i.e. for k = 0, f⋆ has to be selected by the designer. For k > 0 it is
possible to select f⋆ such that

f(xk)− f⋆ = f(xk−1)− f(xk).

The resulting α is

α⋆ = −2
f(xk)− f⋆
∇f(xk)′dk

.

In some algorithms it is convenient to select α ≤ 1, hence the initial guess for α will
be min (1, α⋆) .

• Computation of αk. A value for αk is computed using a line search method. If
αk ≤ α the direction dk may not be a descent direction. If αk ≥ α the level set
L(f(xk)) may not be compact. If αk 6∈ [α,α] the line search fails, and it is necessary
to select a new research direction dk. Otherwise the line search terminates and
xk+1 = xk + αkdk.

2.5 The gradient method

The gradient method consists in selecting, as research direction, the direction of the anti-
gradient at xk, i.e.

dk = −∇f(xk),

for all k. This selection is justified noting that the direction6

−
∇f(xk)

‖∇f(xk)‖E

is the direction that minimizes the directional derivative, among all direction with unitary
Euclidean norm. In fact, by Schwartz inequality, one has

|∇f(xk)
′d| ≤ ‖d‖E‖∇f(xk)‖E ,

and the equality sign holds if and only if d = λ∇f(xk), with λ ∈ IR. As a consequence,
the problem

min
‖d‖E=1

∇f(xk)
′d

6We denote with ‖v‖E the Euclidean norm of the vector v, i.e. ‖v‖E =
√
v′v.
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has the solution d⋆ = − ∇f(xk)
‖∇f(xk)‖E

. For this reason, the gradient method is sometimes

called the method of the steepest descent. Note however that the (local) optimality of
the direction −∇f(xk) depends upon the selection of the norm, and that with a proper
selection of the norm, any descent direction can be regarded as the steepest descent.
The real interest in the direction −∇f(xk) rests on the fact that, if ∇f is continuous, then
the former is a continuous descent direction, which is zero only if the gradient is zero, i.e.
at a stationary point.
The gradient algorithm can be schematized has follows.

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else set dk = −∇f(xk).

Step 3. Compute a step αk along the direction dk with any line search method such
that

f(xk + αkdk) ≤ f(xk)

and

lim
k→∞

∇f(xk)
′dk

‖dk‖
= 0.

Step 4. Set xk+1 = xk + αkdk, k = k + 1. Go to Step 2.

By the general results established in Theorem 4, we have the following fact regarding the
convergence properties of the gradient method.

Theorem 8 Consider f : IRn → IR. Assume ∇f is continuous and the level set L(f(x0))
is compact. Then any accumulation point of the sequence {xk} generated by the gradient
algorithm is a stationary point of f .

To estimate the speed of convergence of the method we can consider the behavior of the
method in the minimization of a quadratic function, i.e. in the case

f(x) =
1

2
x′Qx+ c′x+ d,

with Q = Q′ > 0. In such a case it is possible to obtain the following estimate

‖xk+1 − x⋆‖ ≤

√
λM

λm

λM − λm

λM + λm
‖xk − x⋆‖,

where λM ≥ λm > 0 are the maximum and minimum eigenvalue of Q, respectively. Note
that the above estimate is exact for some initial points x0. As a result, if λM 6= λm the
gradient algorithm has linear convergence, however, if λM/λm is large the convergence can
be very slow.
Finally, if λM/λm = 1 the gradient algorithm converges in one step. From a geometric
point of view the ratio λM/λm expresses the ratio between the lengths of the maximum
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and the minimum axes of the ellipsoids, that constitute the level surfaces of f . If this ratio
is big there are points from which the gradient algorithm converges very slowly, see e.g.
Figure 2.5.

In the non-quadratic case, the performance of the gradient method are unacceptable,
especially if the level surfaces of f have high curvature.

2.6 Newton’s method

Newton’s method, with all its variations, is the most important method in unconstrained
optimization. Let f : IRn → IR be a given function and assume that ∇2f is continuous.
Newton’s method for the minimization of f can be derived assuming that, given xk, the
point xk+1 is obtained minimizing a quadratic approximation of f . As f is two times
differentiable, it is possible to write

f(xk + s) = f(xk) +∇f(xk)
′s+

1

2
s′∇2f(xk)s + β(xk, s),

in which

lim
‖s‖→0

β(xk, s)

‖s‖2
= 0.

For ‖s‖ sufficiently small, it is possible to approximate f(xk + s) with its quadratic ap-
proximation

q(s) = f(xk) +∇f(xk)
′s+

1

2
s′∇2f(xk)s.

If ∇2f(xk) > 0, the value of s minimizing q(s) can be obtained setting to zero the gradient
of q(s), i.e.

∇q(s) = ∇f(xk) +∇2f(xk)s = 0,

yielding

s = −
[
∇2f(xk)

]−1
∇f(xk).

The point xk+1 is thus given by

xk+1 = xk −
[
∇2f(xk)

]−1
∇f(xk).

Finally, Newton’s method can be described by the simple scheme.

.. ..
Figure 2.5: Behavior of the gradient algorithm.
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Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute

s = −
[
∇2f(xk)

]−1
∇f(xk).

Step 3. Set xk+1 = xk + s, k = k + 1. Go to Step 2.

Remark. An equivalent way to introduce Newton’s method for unconstrained optimization
is to regard the method as an algorithm for the solution of the system of n non-linear
equations in n unknowns given by

∇f(x) = 0.

For, consider, in general, a system of n equations in n unknown

F (x) = 0,

with x ∈ IRn and F : IRn → IRn. If the Jacobian matrix of F exists and is continuous,
then one can write

F (x+ s) = F (x) +
∂F

∂x
(x)s+ γ(x, s),

with

lim
‖s‖→0

γ(x, s)

‖s‖
= 0.

Hence, given a point xk we can determine xk+1 = xk + s setting s such that

F (xk) +
∂F

∂x
(xk)s = 0.

If ∂F
∂x (xk) is invertible we have

s = −

[
∂F

∂x
(xk)

]−1

F (xk),

hence Newton’s method for the solution of the system of equation F (x) = 0 is

xk+1 = xk −

[
∂F

∂x
(xk)

]−1

F (xk), (2.3)

with k = 0, 1, . . .. Note that, if F (x) = ∇f , then the above iteration coincides with
Newton’s method for the minimization of f . ⋄

To study the convergence properties of Newton’s method we can consider the algorithm for
the solution of a set of non-linear equations, summarized in equation (2.3). The following
local convergence result, providing also an estimate of the speed of convergence, can be
proved.
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Theorem 9 Let F : IRn → IRn and assume that F is continuously differentiable in an
open set D ⊂ IRn. Suppose moreover that

• there exists x⋆ ∈ D such that F (x⋆) = 0;

• the Jacobian matrix ∂F
∂x (x⋆) is non-singular;

• there exists L > 0 such that7

∥∥∥∥
∂F

∂x
(z)−

∂F

∂x
(y)

∥∥∥∥ ≤ L‖z − y‖,

for all z ∈ D and y ∈ D.

Then there exists and open set B ⊂ D such that for any x0 ∈ B the sequence {xk} generated
by equation (2.3) remains in B and converges to x⋆ with quadratic speed of convergence.

The result in Theorem 9 can be easily recast as a result for the convergence of Newton’s
method for unconstrained optimization. For, it is enough to note that all hypotheses on
F and ∂F

∂x translate into hypotheses on ∇f and ∇2f . Note however that the result is only
local and does not allow to distinguish between local minimizers and local maximizers.
To construct an algorithm for which the sequence {xk} does not converge to maxima,
and for which global convergence, i.e. convergence from points outside the set B, holds,
it is possible to modify Newton’s method considering a line search along the direction
dk = −

[
∇2f(xk)

]−1
∇f(xk). As a result, the modified Newton’s algorithm

xk+1 = xk − αk

[
∇2f(xk)

]−1
∇f(xk), (2.4)

in which αk is computed using any line search algorithm, is obtained. If ∇2f is uni-
formly positive definite, and this implies that the function f is convex, the direction
dk = −

[
∇2f(xk)

]−1
∇f(xk) is a descent direction satisfying the condition of angle. Hence,

by Theorem 4, we can conclude the (global) convergence of the algorithm (2.4). Moreover,
it is possible to prove that, for k sufficiently large, the step αk = 1 satisfies the conditions
of Armijo method, hence the sequence {xk} has quadratic speed of convergence.

Remark. If the function to be minimized is quadratic, i.e.

f(x) =
1

2
x′Qx+ c′x+ d,

and if Q > 0, Newton’s method yields the (global) minimizer of f in one step. ⋄

In general, i.e. if ∇2f(x) is not positive definite for all x, Newton’s method may be in-

applicable because either ∇2f(xk) is not invertible, or dk = −
[
∇2f(xk)

]−1
∇f(xk) is not

a descent direction. In these cases it is necessary to further modify Newton’s method.
Diverse criteria have been proposed, most of which rely on the substitution of the matrix

7This is equivalent to say that ∂F
∂x

(x) is Lipschitz continuous in D.
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∇2f(xk) with a matrix Mk > 0 which is close in some sense to ∇2f(xk). A simpler
modification can be obtained using the direction dk = −∇f(xk) whenever the direction

dk = −
[
∇2f(xk)

]−1
∇f(xk) is not a descent direction. This modification yields the fol-

lowing algorithm.

Step 0. Given x0 ∈ IRn and ǫ > 0.

Step 1. Set k = 0.

Step 2. Compute∇f(xk). If ∇f(xk) = 0 STOP. Else compute∇2f(xk). If∇
2f(xk)

is singular set dk = −∇f(xk) and go to Step 6.

Step 3. Compute Newton direction s solving the (linear) system

∇2f(xk)s = −∇f(xk).

Step 4. If

|∇f(xk)
′s| < ǫ‖∇f(xk)‖‖s‖

set dk = −∇f(xk) and go to Step 6.

Step 5. If

∇f(xk)
′s < 0

set dk = s; if

∇f(xk)
′s > 0

set dk = −s.

Step 6. Make a line search along dk assuming as initial estimate α = 1. Compute
xk+1 = xk + αkdk, set k = k + 1 and go to Step 2.

The above algorithm is such that the direction dk satisfies the condition of angle, i.e.

∇f(xk)
′dk ≤ −ǫ‖∇f(xk)‖‖dk‖,

for all k. Hence, the convergence is guaranteed by the general result in Theorem 4.
Moreover, if ǫ is sufficiently small, if the hypotheses of Theorem 9 hold, and if the line
search is performed with Armijo method and with the initial guess α = 1, then the above
algorithm has quadratic speed of convergence.

Finally, note that it is possible to modify Newton’s method, whenever it is not applicable,
without making use of the direction of the anti-gradient. We now briefly discuss two such
modifications.
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2.6.1 Method of the trust region

A possible approach to modify Newton’s method to yield global convergence is to set the
direction dk and the step αk in such a way to minimize the quadratic approximation of
f on a sphere centered at xk and of radius ak. Such a sphere is called trust region. This
name refers to the fact that, in a small region around xk we are confident (we trust) that
the quadratic approximation of f is a good approximation.
The method of the trust region consists in selecting xk+1 = xk+sk, where sk is the solution
of the problem

min
‖s‖≤ak

q(s), (2.5)

with

q(s) = f(xk) +∇f(xk)
′s+

1

2
s′∇2f(xk)s,

and ak > 0 the estimate at step k of the trust region. As the above (constrained) optimiza-
tion problem has always a solution, the direction sk is always defined. The computation of
the estimate ak is done, iteratively, in such a way to enforce the condition f(xk+1) < f(xk)
and to make sure that f(xk + sk) ≈ q(sk), i.e. that the change of f and the estimated
change of f are close.
Using these simple ingredients it is possible to construct the following algorithm.

Step 0. Given x0 ∈ IRn and a0 > 0.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else go to Step 3.

Step 3. Compute sk solving problem (2.5).

Step 4. Compute8

ρk =
f(xk + sk)− f(xk)

q(sk)− f(xk)
. (2.6)

Step 5. If ρk < 1/4 set ak+1 = ‖sk‖/4. If ρk > 3/4 and ‖sk‖ = ak set ak+1 = 2ak.
Else set ak+1 = ak.

Step 6. If ρk ≤ 0 set xk+1 = xk. Else set xk+1 = xk + sk.

Step 7. Set k = k + 1 and go to Step 2.

Remark. Equation (2.6) expresses the ratio between the actual change of f and the esti-
mated change of f . ⋄

It is possible to prove that, if L(f(x0)) is compact and∇2f is continuous, any accumulation
point resulting from the above algorithm is a stationary point of f , in which the second
order necessary conditions hold.

8If f is quadratic then ρk = 1 for all k.
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The update of ak is devised to enlarge or shrink the region of confidence on the basis of
the number ρk. It is possible to show that if {xk} converges to a local minimizer in which
∇2f is positive definite, then ρk converges to one and the direction sk coincides, for k
sufficiently large, with the Newton direction. As a result, the method has quadratic speed
of convergence.

In practice, the solution of the problem (2.5) cannot be obtained analytically, hence ap-
proximate problems have to be solved. For, consider sk as the solution of the equation

(
∇2f(xk) + νkI

)
sk = −∇f(xk), (2.7)

in which νk > 0 has to be determined with proper considerations. Under certain hypothe-
ses, the sk determined solving equation (2.7) coincides with the sk computed using the
method of the trust region.

Remark. A potential disadvantage of the method of the trust region is to reduce the step
along Newton direction even if the selection αk = 1 would be feasible. ⋄

2.6.2 Non-monotonic line search

Experimental evidence shows that Newton’s method gives the best result if the step αk = 1
is used. Therefore, the use of αk < 1 along Newton direction, resulting e.g. from the
application of Armijo method, results in a degradation of the performance of the algorithm.
To avoid this phenomenon it has been suggested to relax the condition f(xk+1) < f(xk)
imposed on Newton algorithm, thus allowing the function f to increase for a certain
number of steps. For example, it is possible to substitute the reduction condition of
Armijo method with the condition

f(xk + αkdk) ≤ max
0≤j≤M

[f(xk−j)] + γαk∇f(xk)
′dk

for all k ≥ M , where M > 0 is a fixed integer independent from k.

2.6.3 Comparison between Newton’s method and the gradient method

The gradient method and Newton’s method can be compared from different point of views,
as described in Table 2.1. From the table, it is obvious that Newton’s method has better
convergence properties but it is computationally more expensive. There exist methods
which preserve some of the advantages of Newton’s method, namely speed of convergence
faster than the speed of the gradient method and finite convergence for quadratic functions,
without requiring the knowledge of ∇2f . Such methods are

• the conjugate directions methods;

• quasi-Newton methods.
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Gradient method Newton’s method

Information required at
each step

f and ∇f f , ∇f and ∇2f

Computation to find
the research direction

∇f(xk)
∇f(xk), ∇

2f(xk),
−[∇2f(xk)]

−1∇f(xk)

Convergence

Global if L(f(x0))
compact and ∇f

continuous

Local, but may be
rendered global

Behavior for quadratic
functions

Asymptotic
convergence

Convergence in one
step

Speed of convergence
Linear for quadratic

functions

Quadratic (under
proper hypotheses)

Table 2.1: Comparison between the gradient method and Newton’s method.

2.7 Conjugate directions methods

Conjugate directions methods have been motivated by the need of improving the con-
vergence speed of the gradient method, without requiring the computation of ∇2f , as
required in Newton’s method.

A basic characteristic of conjugate directions methods is to find the minimizer of a
quadratic function in a finite number of steps. These methods have been introduced for
the solution of systems of linear equations and have later been extended to the solution
of unconstrained optimization problems for non-quadratic functions.

Definition 5 Given a matrix Q = Q′, the vectors d1 and d2 are said to be Q-conjugate if

d′1Qd2 = 0.

Remark. If Q = I then two vectors are Q-conjugate if they are orthogonal. ⋄

Theorem 10 Let Q ∈ IRn×n and Q = Q′ > 0. Let di ∈ IRn, for i = 0, · · · , k, be non-zero
vectors. If di are mutually Q-conjugate, i.e.

d′iQdj = 0,

for all i 6= j, then the vectors di are linearly independent.
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Proof. Suppose there exists constants αi, with αi 6= 0 for some i, such that

α0d0 + · · ·αkdk = 0.

Then, left multiplying with Q and d′j yields

αjd
′
jQdj = 0,

which implies, as Q > 0, αj = 0. Repeating the same considerations for all j ∈ [0, k] yields
the claim. ⊳

Consider now a quadratic function

f(x) =
1

2
x′Qx+ c′x+ d,

with x ∈ IRn and Q = Q′ > 0. The (global) minimizer of f is given by

x⋆ = −Q−1c,

and this can be computed using the procedure given in the next statement.

Theorem 11 Let Q = Q′ > 0 and let d0, d1, · · ·, dn−1 be n non-zero vectors mutually
Q-conjugate. Consider the algorithm

xk+1 = xk + αkdk

with

αk = −
∇f(xk)

′dk
d′kQdk

= −
(x′kQ+ c′)dk

d′kQdk
.

Then, for any x0, the sequence {xk} converges, in at most n steps, to x⋆ = −Q−1c, i.e. it
converges to the minimizer of the quadratic function f .

Remark. Note that αk is selected at each step to minimize the function f(xk +αdk) with
respect to α, i.e. at each step an exact line search in the direction dk is performed. ⋄

In the above statement we have assumed that the directions dk have been preliminarily
assigned. However, it is possible to construct a procedure in which the directions are
computed iteratively. For, consider the quadratic function f(x) = 1

2x
′Qx + c′x + d, with

Q > 0, and the following algorithm, known as conjugate gradient method.

Step 0. Given x0 ∈ IRn and the direction

d0 = −∇f(x0) = −(Qx0 + c).

Step 1. Set k = 0.
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Step 2. Let

xk+1 = xk + αkdk

with

αk = −
∇f(xk)

′dk
d′kQdk

= −
(x′kQ+ c′)dk

d′kQdk
.

Step 3. Compute dk+1 as follows

dk+1 = −∇f(xk+1) + βkdk,

with

βk =
∇f(xk+1)

′Qdk
d′kQdk

.

Step 4. Set k = k + 1 and go to Step 2.

Remark. As already observed, αk is selected to minimize the function f(xk +αdk). More-
over, this selection of αk is also such that

∇f(xk+1)
′dk = 0. (2.8)

In fact,

Qxk+1 = Qxk + αkQdk

hence

∇f(xk+1) = ∇f(xk) + αkQdk. (2.9)

Left multiplying with d′k yields

d′k∇f(xk+1) = d′k∇f(xk) + d′kQdkαk = d′k∇f(xk)− d′kQdk
∇f(xk)

′dk
d′kQdk

= 0.

⋄

Remark. βk is such that dk+1 is Q-conjugate with respect to dk. In fact,

d′kQdk+1 = d′kQ

(
−∇f(xk+1) +

∇f(xk+1)
′Qdk

d′kQdk
dk

)
= d′kQ (−∇f(xk+1) +∇f(xk+1)) = 0.

Moreover, this selection of βk yields also

∇f(xk)
′dk = −∇f(xk)

′∇f(xk). (2.10)

⋄

For the conjugate gradient method it is possible to prove the following fact.
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Theorem 12 The conjugate gradient method yields the minimizer of the quadratic func-
tion

f(x) =
1

2
x′Qx+ c′x+ d,

with Q = Q′ > 0, in at most n iterations, i.e. there exists m ≤ n− 1 such that

∇f(xm+1) = 0.

Moreover
∇f(xj)

′∇f(xi) = 0 (2.11)

and
d′jQdi = 0, (2.12)

for all [0,m+ 1] ∋ i 6= j ∈ [0,m + 1].

Proof. To prove the (finite) convergence of the sequence {xk} it is enough to show that the
directions dk are Q-conjugate, i.e. that equation (2.12) holds. In fact, if equation (2.12)
holds the claim is a consequence of Theorem 11. ⊳

The conjugate gradient algorithm, in the form described above, cannot be used for the
minimization of non-quadratic functions, as it requires the knowledge of the matrix Q,
which is the Hessian of the function f . Note that the matrix Q appears at two levels in
the algorithm: in the computation of the scalar βk required to compute the new direction
of research, and in the computation of the step αk. It is therefore necessary to modify the
algorithm to avoid the computation of ∇2f , but at the same time it is reasonable to make
sure that the modified algorithm coincides with the above one in the quadratic case.

2.7.1 Modification of βk

To begin with note that, by equation (2.9), βk can be written as

βk =
∇f(xk+1)

′∇f(xk+1)−∇f(xk)

αk

d′k
∇f(xk+1)−∇f(xk)

αk

=
∇f(xk+1)

′ [∇f(xk+1)−∇f(xk)]

d′k [∇f(xk+1)−∇f(xk)]
,

and, by equation (2.8),

βk = −
∇f(xk+1)

′ [∇f(xk+1)−∇f(xk)]

d′k∇f(xk)
. (2.13)

Using equation (2.13), it is possible to construct several expressions for βk, all equivalent
in the quadratic case, but yielding different algorithms in the general (non-quadratic) case.
A first possibility is to consider equations (2.10) and (2.11) and to define

βk =
∇f(xk+1)

′∇f(xk+1)

∇f(xk)′∇f(xk)
=

‖∇f(xk+1)‖
2

‖∇f(xk)‖2
, (2.14)
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which is known as Fletcher-Reeves formula.
A second possibility is to write the denominator as in equation (2.14) and the numerator
as in equation (2.13), yielding

βk =
∇f(xk+1)

′ [∇f(xk+1)−∇f(xk)]

‖∇f(xk)‖2
, (2.15)

which is known as Polak-Ribiere formula. Finally, it is possible to have the denominator
as in (2.13) and the numerator as in (2.14), i.e.

βk = −
‖∇f(xk+1)‖

2

d′k∇f(xk)
. (2.16)

2.7.2 Modification of αk

As already observed, in the quadratic version of the conjugate gradient method also the
step αk depends upon Q. However, instead of using the αk given in Step 2 of the
algorithm, it is possible to use a line search along the direction αk. In this way, an
algorithm for non-quadratic functions can be constructed. Note that αk, in the algorithm
for quadratic functions, is also such that d′k∇f(xk+1) = 0. Therefore, in the line search, it
is reasonable to select αk such that, not only f(xk+1) < f(xk), but also dk is approximately
orthogonal to ∇f(xk+1).

Remark. The condition of approximate orthogonality between dk and ∇f(xk+1) cannot be
enforced using Armijo method or Goldstein conditions. However, there are more sophisti-
cated line search algorithms, known as Wolfe conditions, which allow to enforce the above
constraint. ⋄

2.7.3 Polak-Ribiere algorithm

As a result of the modifications discussed in the last sections, it is possible to construct an
algorithm for the minimization of general functions. For example, using equation (2.15)
we obtain the following algorithm, due to Polak-Ribiere, which has proved to be one of
the most efficient among the class of conjugate directions methods.

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else let

dk =





−∇f(x0), if k = 0

−∇f(xk) +
∇f(xk)

′ [∇f(xk)−∇f(xk−1)]

‖∇f(xk−1)‖2
dk−1, if k ≥ 1.

Step 3. Compute αk performing a line search along dk.
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Step 4. Set xk+1 = xk + αkdk, k = k + 1 and go to Step 2.

Remark. The line search has to be sufficiently accurate, to make sure that all directions
generated by the algorithm are descent directions. A suitable line search algorithm is the
so-called Wolfe method, which is a modification of Goldstein method. ⋄

Remark. To guarantee global convergence of a subsequence it is possible to use, every n
steps, the direction −∇f . In this case, it is said that the algorithm uses a restart procedure.
For the algorithm with restart it is possible to have quadratic speed of convergence in n
steps, i.e

‖xk+n − x⋆‖ ≤ γ‖xk − x⋆‖
2,

for some γ > 0. ⋄

Remark. It is possible to modify Polak-Ribiere algorithm to make sure that at each step
the angle condition holds. In this case, whenever the direction dk does not satisfy the
angle condition, it is sufficient to use the direction −∇f . Note that, enforcing the angle
condition, yields a globally convergent algorithm. ⋄

Remark. Even if the use of the direction −∇f every n steps, or whenever the angle condi-
tion is not satisfied, allows to prove global convergence of Polak-Ribiere algorithm, it has
been observed in numerical experiments that such modified algorithms do not perform as
well as the original one. ⋄

2.8 Quasi-Newton methods

Conjugate gradient methods have proved to be more efficient than the gradient method.
However, in general, it is not possible to guarantee superlinear convergence. The main
advantage of conjugate gradient methods is in the fact that they do not require to construct
and store any matrix, hence can be used in large scale problems.

In small and medium scale problems, i.e. problems with less then a few hundreds decision
variables, in which ∇2f is not available, it is convenient to use the so-called quasi-Newton
methods.

Quasi Newton methods, as conjugate directions methods, have been introduced for qua-
dratic functions. They are described by an algorithm of the form

xk+1 = xk − αkHk∇f(xk),

with H0 given. The matrix Hk is an approximation of [∇2f(xk)]
−1 and it is computed

iteratively at each step.
If f is a quadratic function, the gradient of f is given by

∇f(x) = Qx+ c,
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for some Q and c, hence for any x ∈ IRn and y ∈ IRn one has

∇f(y)−∇f(x) = Q(y − x),

or, equivalently,

Q−1[∇f(y)−∇f(x)] = y − x.

It is then natural, in general, to construct the sequence {Hk} such that

Hk+1[∇f(xk+1)−∇f(xk)] = xk+1 − xk. (2.17)

Equation (2.17) is known as quasi-Newton equation.

There exist several update methods satisfying the quasi-Newton equation. For simplicity,
set

γk = ∇f(xk+1)−∇f(xk),

and

δk = xk+1 − xk.

As a result, equation (2.17) can be rewritten as

Hk+1γk = δk.

One of the first quasi-Newton methods has been proposed by Davidon, Fletcher and Powell,
and can be summarized by the equations

DFP





H0 = I

Hk+1 = Hk +
δkδ

′
k

δ′kγk
−

Hkγkγ
′
kHk

γ′kHkγk
.

(2.18)

It is easy to show that the matrix Hk+1 satisfies the quasi-Newton equation (2.17), i.e.

Hk+1γk = Hkγk +
δkδ

′
k

δ′kγk
γk −

Hkγkγ
′
kHk

γ′kHkγk
γk

= Hkγk +
δ′kγk
δ′kγk

δk −
γ′kHkγk
γ′kHkγk

Hkγk

= δk.

Moreover, it is possible to prove the following fact, which gives conditions such that the
matrices generated by DFP method are positive definite for all k.

Theorem 13 Let Hk = H ′
k > 0 and assume δ′kγk > 0. Then the matrix

Hk +
δkδ

′
k

δ′kγk
−

Hkγkγ
′
kHk

γ′kHkγk

is positive definite.



44 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

DFP method has the following properties. In the quadratic case, if αk is selected to
minimize

f(xk − αHk∇f(xk)),

then

• the directions dk = −Hk∇f(xk) are mutually conjugate;

• the minimizer of the (quadratic) function is found in at most n steps, moreover
Hn = Q−1;

• the matrices Hk are always positive definite.

In the non-quadratic case

• the matrices Hk are positive definite (hence dk = −Hk∇f(xk) is a descent direction)
if δ′kγk > 0;

• it is globally convergent if f is strictly convex and if the line search is exact;

• it has superlinear speed of convergence (under proper hypotheses).

A second, and more general, class of update formulae, including as a particular case DFP
formula, is the so-called Broyden class, defined by the equations

Broyden





H0 = I

Hk+1 = Hk +
δkδ

′
k

δ′kγk
−

Hkγkγ
′
kHk

γ′kHkγk
+ φvkv

′
k,

(2.19)

with φ ≥ 0 and

vk = (γ′kHkγk)
1/2

(
δk
δ′kγk

−
Hkγk
γ′kHkγk

)
.

If φ = 0 then we obtain DFP formula, whereas for φ = 1 we have the so-called Broyden-
Fletcher-Goldfarb-Shanno (BFGS) formula, which is one of the preferred algorithms in
applications. From Theorem 13 it is easy to infer that, if H0 > 0, γ′kδk > 0 and φ ≥ 0,
then all formulae in the class of Broyden generate matrices Hk > 0.

Remark. Note that the condition δ′kγk > 0 is equivalent to

(∇f(xk+1)−∇f(xk))
′ dk > 0,

and this can be enforced with a sufficiently precise line search. ⋄

For the method based on BFGS formula, a global convergence result, for convex functions
and in the case of non-exact (but sufficiently accurate) line search, has been proved.
Moreover, it has been shown that the algorithm has superlinear speed of convergence.
This algorithm can be summarized as follows.
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Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else compute Hk with BFGS
equation and set

dk = −Hk∇f(xk).

Step 3. Compute αk performing a line search along dk.

Step 4. Set xk+1 = xk + αkdk, k = k + 1 and go to Step 2.

In the general case it is not possible to prove global convergence of the algorithm. However,
this can be enforced verifying (at the end of Step 2), if the direction dk satisfies an angle
condition, and if not use the direction dk = −∇f(xk). However, as already observed, this
modification improves the convergence properties, but reduces (sometimes drastically) the
speed of convergence.

2.9 Methods without derivatives

All the algorithms that have been discussed presuppose the knowledge of the derivatives
(first and/or second) of the function f . There are, however, also methods which do not
require such a knowledge. These methods can be divided in two classes: direct research
methods and methods using finite difference approximations.

Direct search methods are based upon the direct comparison of the values of the function
f in the points generated by the algorithm, without making use of the necessary condition
of optimality ∇f = 0. In this class, the most interesting methods, i.e. the methods for
which it is possible to give theoretical results, are those that make use cyclically of n
linearly independent directions. The simplest possible method, known as the method of
the coordinate directions, can be described by the following algorithm.

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Set j = 1.

Step 3. Set dk = ej , where ej is the j-th coordinate direction.

Step 4. Compute αk performing a line search without derivatives along dk.

Step 5. Set xk+1 = xk + αkdk, k = k + 1.

Step 6. If j < n set j = j + 1 and go to Step 3. If j = n go to Step 2.
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It is easy to verify that the matrix

Pk =
[
dk dk+1 · · · dk+n−1

]

is such that
|detPk| = 1,

hence, if the line search is such that

lim
k→∞

∇f(xk)
′dk

‖dk‖
= 0

and
lim
k→∞

‖xk+1 − xk‖ = 0,

convergence to stationary points is ensured by the general result in Theorem 5. Note
that, the line search can be performed using the parabolic line search method described
in Section 2.4.4.
The method of the coordinate directions is not very efficient, in terms of speed of conver-
gence. Therefore, a series of heuristics have been proposed to improve its performance.
One such heuristics is the so-called method of Jeeves and Hooke, in which not only the
search along the coordinate directions is performed, but also a search along directions
joining pairs of points generated by the algorithm. In this way, the search is performed
along what may be considered to be the most promising directions.
An alternative direct search method is the so-called simplex method (which should not
be confused with the simplex method of linear programming). The method starts with
n + 1 (equally spaced) points x(i) ∈ IRn (these points give a simplex in IRn). In each of
these points the function f is computed and the vertex where the function f attains the
maximum value is determined. Suppose this is the vertex x(n+1). This vertex is reflected
with respect to the center of the simplex, i.e. the point

xc =
1

n+ 1

n+1∑

i=1

x(i).

As a result, the new vertex

x(n+2) = xc + α(xc − x(n+1))

where α > 0, is constructed, see Figure 2.6. The procedure is then repeated.
It is possible that the vertex that is generated by one step of the algorithm is (again) the
one where the function f has its maximum. In this case, the algorithm cycles, hence the
next vertex has to be determined using a different strategy. For example, it is possible to
construct the next vertex by reflecting another of the remaining n vertex, or to shrink the
simplex.
As a stopping criterion it is possible to consider the condition

1

n+ 1

n+1∑

i=1

(
f(x(i))− f̄

)2
< ǫ (2.20)
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Figure 2.6: The simplex method. The points x(1), x(2) and x(3) yields the starting simplex.
The second simplex is given by the points x(1), x(2) and x(4). The third simplex is given
by the points x(2), x(4) and x(5).

where ǫ > 0 is assigned by the designer, and

f̄ =
1

n+ 1

n+1∑

i=1

f(x(i)),

i.e. f̄ is the mean value of the f(x(i)). Condition (2.20) implies that the points x(i) are all
in a region where the function f is flat.
As already observed, direct search methods are not very efficient, and can be used only for
problems with a few decision variables and when approximate solutions are acceptable. As
an alternative, if the derivatives of the function f are not available, it is possible to resort
to numeric differentiation, e.g the entries of the gradient of f can be computed using the
so-called forward difference approximation, i.e.

∂f(x)

∂xi
≈

f(x+ tei)− f(x)

t
,

where ei is the i-th column of the identity matrix of dimension n, and t > 0 has to be
fixed by the user. Note that there are methods for the computation of the optimal value
of t, i.e. the value of t which minimizes the approximation error.

2.10 Exercises

This section contains a set of exercises related to the notions, concepts, algorithms and
tools discussed in Chapter 2, together with exercises on topics which have not been covered
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in the book. In these cases, the specific topic is briefly illustrated in the text of the exercise.
The objective is to draw the reader’s attention to the fact that there are many more ideas,
methods and algorithms which have been developed to solve unconstrained optimization
problems and which are not covered in the book. The basic principles provided in Chap-
ter 2 should however be sufficient to understand more advanced and involved methods.
Not surprisingly, a significant number of exercises is devoted to Newton’s method and
its modifications: undoubtedly, Newton’s method is one of the most important methods
in optimization (and numerical analysis). All exercises have a brief worked out solution,
which provides guidelines and checkpoints to help the reader assess their level of under-
standing and familiarity with the content covered. Note that the exercises are not ordered
in any particular way: the order is the result of the history of my optimization course and
of the exam papers I have set over the years.

Exercise 1 Consider the problem of minimizing the function

f(x) = x2
1 + x2

2 − x1.

a) Compute the unique stationary point of the function, and show that the function is radially un-
bounded.

b) Using second order sufficient conditions show that the stationary point determined in part a) is a
local minimizer. Also show that the point is a global minimizer.

c) Consider the minimization of the function f using the gradient algorithm. Express analytically the
form of the generic iteration, i.e.

pk+1 = pk − α∇f,
where pi = [xi

1, x
i
2]

′.

d) Consider the initial point p0 = [1, 1]′ and apply one step of the gradient algorithm from part c) with
exact line search. Verify that p1 coincides with the stationary point determined in part a).

e) It is known that for quadratic functions, such as the function f above, the gradient algorithm is
globally convergent, however the speed of convergence may be very slow. Discuss why, for the
function f , the gradient algorithm with exact line search converges in one step.

Solution 1

a) The stationary points of the function f are computed solving the equation

0 = ∇f =

[
2x1 − 1
2x2

]
,

yielding the unique stationary point x⋆
1 = 1/2 and x⋆

2 = 0. The function f is of the form x′Qx+ c′x
with Q = diag(1, 1) > 0, hence it is radially unbounded.

b) Note that ∇2f = diag(2, 2) > 0, hence x⋆ is a local minimizer. It is also a global minimizer for the
following reasons: the function f is C1 and radially unbounded, therefore the global minimizer is a
stationary point.

c) The generic iteration of the gradient algorithm for the considered function f is

xk+1
1 = xk

1 − α(2xk
1 − 1) xk+1

2 = xk
2 − α(2xk

2).

d) Let x0
1 = x0

2 = 1. Hence
x1
1 = 1− α x1

2 = 1− 2α.

Note now that f(x1
1, x

1
2) = 1− 5α+ 5α2 and this is minimized by α⋆ = 1/2, yielding

x1
1 = 1− α⋆ = 1/2 = x⋆

1 x1
2 = 1− 2α⋆ = 0 = x⋆

2.
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e) For the considered function the gradient algorithm with exact line search converges in one step (from
any initial point) because the function is quadratic and the minimum and maximum eigenvalues of
∇2f coincide.

Exercise 2 Consider the problem of minimizing the function

f(x) = x4
1 + x1x2 +

1

2
x2
2.

a) Compute the stationary points of the function.

b) Using second order sufficient conditions classify the stationary points determined in part a), i.e. say
which is a local minimizer, or a local maximizer, or a saddle point.

c) Consider the minimization of the function f using Newton’s algorithm. Express analytically the
form of the generic iteration, i.e.

pk+1 = pk − [∇2f ]−1∇f,

where pi = [xi
1, x

i
2]

′.

d) The equation in part c) defines a nonlinear discrete-time system with equilibria coinciding with the
stationary points of the function f .

Consider the linear approximation of the system in part c) around the equilibrium corresponding
to the local minimizer of the function f with x1 > 0, and compute the eigenvalues associated with
the linear approximation.

Interpret the result obtained in terms of convergence properties of sequences generated by Newton’s
algorithm and initialized close to a local minimizer.

e) Consider the initial point

p0 =

[
1
0

]

and, using the results in part c), apply four steps of Newton’s algorithm to generate the points p1,
p2, p3, p4. Comment on the speed of convergence of the sequence.

Solution 2

a) The stationary point of the function f are computed solving the equation

0 = ∇f =

[
4x3

1 + x2

x1 + x2

]
,

yielding the stationary points

p⋆ =

[
0
0

]
, p̃⋆ =

[
−1/2
1/2

]
, p̂⋆ =

[
1/2
−1/2

]
.

b) Note that

∇2f(p⋆) =

[
0 1
1 1

]

is indefinite and that

∇2f(p̃⋆) = ∇2f(p̂⋆) =

[
3 1
1 1

]
> 0.

Hence, p⋆ is a saddle point, and p̃⋆ and p̂⋆ are local minimizers.

c) The generic iteration of Newton’s algorithm for the considered function f is

xk+1
1 =

8(xk
1)

3

12(xk
1)

2 − 1
, xk+1

2 = − 8(xk
1)

3

12(xk
1)

2 − 1
.
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d) The linear approximation of the above nonlinear discrete-time system around the point p̂⋆ is the
system

pk+1 = Apk =

[
0 0
0 0

]
pk.

This linear system is such that p1 = 0 for any p0, and this explains the local ’fast’ speed of
convergence of Newton’s iteration.

e) A simple computation yields the sequence

p0 =

[
1
0

]
, p1 =

[
0.7272727273
−0.7272727273

]
, p2 =

[
0.57552339460
−0.57552339460

]
,

p3 =

[
0.51266296461
−0.51266296461

]
, p4 =

[
0.5004542259
−0.5004542259

]
,

and this shows the fast convergence (approximately two exact digits for each iteration) of Newton’s
algorithm.

Exercise 3 Consider the function

f(x) = x2
1 + x1x2 + (x1 − x2)

4.

a) Compute all stationary points of the function.
(Hint: obtain first (x1 − x2)

3 in terms of x1 from the necessary conditions of optimality.)

b) Using second order sufficient conditions, classify the stationary points determined in part a), i.e.
say which is a local minimizer, or a local maximizer, or a saddle point.

c) Consider the point p = (0, 0) and the direction d =

[
1

−3

]
. Using the definition of a descent

direction, show that d is a descent direction for f at p.

d) Perform an exact line search along the direction d =

[
1

−3

]
starting at p = (0, 0). Show that the

point obtained as a result of the line search procedure is a local minimizer of the function f .

Solution 3

a) The stationary points of the function f are computed by solving the equation

0 = ∇f =

[
2x1 + x2 + 4(x1 − x2)

3

x1 − 4(x1 − x2)
3

]
,

yielding

P1 = (0, 0), P2 =
(
− 1

16
,
3

16

)
, P3 =

(
1

16
,− 3

16

)
.

b) Note that

∇2f =

[
2 + 12(x1 − x2)

2 1− 12(x1 − x2)
2

1− 12(x1 − x2)
2 12(x1 − x2)

2

]
.

Thus

∇2f(P1) =

[
2 1
1 0

]
,

which is an indefinite matrix, and

∇2f(P2) = ∇2f(P3) =

[
11/4 1/4
1/4 3/4

]
,

which is a positive definite matrix. As a result, P1 is a saddle point, and P2 and P3 are local
minimizers.
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c) By definition, a direction d is a descent direction for f at p if there exists δ > 0 such that

f(p+ λd) < f(p),

for all λ ∈ (0, δ). Consider now the given direction and note that f(p) = 0 and that

f(p+ λd) = −2λ2 + 256λ4.

Hence, f(p + λd) < f(p) for all λ > 0 and sufficiently small. (Note that ∇f(p)′d = 0, hence this
condition cannot be used to decide if d is a descent direction, or otherwise.)

d) To perform an exact line search along the direction d, starting from p = (0, 0), we need to find the
minimum of the function

φ(λ) = f(p+ λd)− f(p) = −2λ2 + 256λ4

for λ > 0. Note that
dφ

dλ
= −4λ+ 1024λ3,

hence the minimum is achieved for λ = 1/16. The resulting point is (1/16,−3/16) and this coincides
with one of the local minimizers determined in part a).

Exercise 4 Consider the problem of minimizing the function

f(x) = x2
1 + 2x2

2 + 4x1 + 4x2.

a) Compute the stationary points of the function.

b) Consider the minimization of the function f using the gradient algorithm. Express analytically the
form of the generic iteration, i.e.

pk+1 = pk − α∇f,
where pi = [xi

1, x
i
2]

′.

c) Compute three steps of the gradient algorithm with exact line search from the initial point p0 =
[0, 0]′, using the fact that, for this p0 the exact line search parameter α is equal to 1/3 for all k.
Check that indeed α⋆ = 1/3 for the first iteration.

d) Exploit the results of part c) to show that the gradient iteration with exact line search for p0 = [0, 0]′

gives

xk+1
1 =

1

3
xk
1 − 4

3
,

xk+1
2 = −1

3
xk
2 − 4

3
,

and hence show that

(xk+1
1 + 2) =

1

3
(xk

1 + 2),

(xk+1
2 + 1) = −1

3
(xk

2 + 1).

Hence, deduce that the sequence {pk} can be written as

pk+1 =

[
2

3k+1 − 2(
− 1

3

)k+1 − 1

]
.

Show that the sequence {pk} converges to the stationary point determined in part a).

Solution 4
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a) The stationary points of the function f are computed by solving the equation

0 = ∇f =

[
2x1 + 4
4x2 + 4

]
,

yielding the stationary point
p⋆ = (−2,−1) .

b) The generic iteration of the gradient algorithm for the considered function f is

xk+1
1 = xk

1 − α(2xk
1 + 4), xk+1

2 = xk
2 − α(4xk

2 + 4).

c) Setting (x0
1, x

0
2) = (0, 0) one has (x1

1, x
1
2) = (−4α,−4α) and

f(−4α,−4α)− f(0, 0) = 48α2 − 32α.

Minimizing this function yields α⋆ = 1/3 (as stated). Therefore, (x1
1, x

1
2) = (−4/3,−4/3).

Repeating the same considerations, and setting always α = 1/3, one has

(x2
1, x

2
2) = (−16/9,−8/9)

and
(x3

1, x
3
2) = (−52/27,−28/27).

d) Setting α = 1/3 in the gradient iteration yields

xk+1
1 =

1

3
xk
1 − 4

3
, xk+1

2 = −1

3
xk
2 − 4

3
,

and this can be also written as

(xk+1
1 + 2) =

1

3
(xk

1 + 2), (xk+1
2 + 1) = −1

3
(xk

2 + 1).

As a result

(xk+1
1 + 2) =

(
1

3

)k

(x0
1 + 2), (xk+1

2 + 1) =
(
−1

3

)k

(x0
2 + 1),

or, equivalently,

xk+1
1 = 2

(
1

3

)k

− 2, xk+1
2 =

(
−1

3

)k

− 1.

Finally, as k → ∞ xk
1 → −2 and xk

2 → −1, i.e. the sequence converges to the stationary point
determined in part a).

Exercise 5

a) An electrical engineer wants to maximize the current I between two points A and B of a complex
network by adjusting the values x1 and x2 of two variable resistors. The engineer does not have a
model of the network and decides to opt for this procedure.

• Keep the value x2 fixed and adjust x1 to maximize I .

• Keep the value x1 fixed and adjust x2 to maximize I .

• Repeat the above steps until no further improvement can be obtained.

Explain if this approach has sound theoretical basis, i.e. discuss under what assumptions the above
procedure determines a stationary point of the function I .

b) Let f : IRn → IR be a differentiable function. Suppose that x⋆ is a local minimizer of f along every
line that passes through x⋆, i.e. the function

g(α) = f(x⋆ + αd)

is minimized at α = 0 for all d ∈ IRn.
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i) Show that ∇f(x⋆) = 0.

ii) Is x⋆ a local minimizer of f?

iii) Consider the function
f(x1, x2) = (x2 − x2

1)(x2 − 2x2
1).

Show that the point (0, 0) is a local minimizer of f along every line that passes through (0,0).
Show that the point (0, 0) is not a local minimizer of f .
(Hint: consider the values of f for x1 = y and x2 = my2 and m ∈ IR.)

Solution 5

a) The engineer is applying the so-called coordinate directions method with an exact line search (with-
out derivatives), as described in Section 2.9, for the minimization of the function −I = −I(x1, x2).
This approach provides a sequence of points converging to a stationary point of the function I
provided that the initial point is selected inside a compact level set of −I(x1, x2).

b) i) Note that, by assumption, the function

dg

dα
= ∇f(x⋆ + αd)′d

is zero for α = 0 and for every d. This means that

∇f(x⋆)
′d = 0

for every d, and this implies that
∇f(x⋆) = 0.

ii) Without further information on f it is not possible to draw any conclusion on x⋆, i.e. x⋆ is a
stationary point of f , but it may be a local minimizer, a local maximizer or a saddle point.

iii) Consider a line that goes through zero, namely x2 = γx1, and note that

f(x1, γx1) = (γx1 − x2
1)(γx1 − 2x2

1) = γ2x2
1 − 3γx3

1 + 2x4
1

and this shows that for all γ the point x1 = 0 is a local minimizer of f(x1, γx1). For com-
pleteness we have also to consider the line x1 = 0 (which corresponds formally to γ = ∞).
Note that

f(0, x2) = x2
2

hence the point x2 = 0 is a minimizer of f(0, x2).
To show that (0, 0) is not a local minimizer of f note first that f(0, 0) = 0 and then let x1 = y
and x2 = my2. Note that

f(y,my2) = y4(m− 1)(m− 2).

Pick m ∈ (1, 2) and note that for such values of m

f(y,my2) = y4(m− 1)(m− 2) < 0

for all y 6= 0. This shows that close to the point (0, 0), where the function is zero, there are
points in which the function takes negative values. Hence, (0, 0) is not a local minimizer of f .

Exercise 6 Consider the problem of minimizing the function

f(x1, x2) =
1

3
x2
1 − αx4

1 +
1

4
x6
1 + x1x2 + x2

2,

where α is a constant.

a) Compute all stationary points of the function.

b) Let α = 5/12. Using second order sufficient conditions classify the stationary points determined in
part a), i.e. say which is a local minimizer, or a local maximizer, or a saddle point.
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c) Let α = 5/12. Show that the function f is radially unbounded and hence compute the global
minimum of f . Is the global minimizer unique?

Solution 6

a) The stationary points of the function f are computed by solving the equation

0 = ∇f =

[
2/3x1 − 4αx3

1 + 3/2x5
1 + x2

x1 + 2x2

]
.

Solving the second equation for x2 yields x2 = −1/2 x1, and upon replacement in the first equation
we obtain

1

6
x1 − 4αx3

1 +
3

2
x5
1 = 0,

yielding, for |α| ≥ 1/4,

x1a = 0, x1b =
1

3

√
12α + 3

√
16α2 − 1, x1c = −1

3

√
12α+ 3

√
16α2 − 1,

x1d =
1

3

√
12α− 3

√
16α2 − 1, x1e = −1

3

√
12α− 3

√
16α2 − 1.

b) For α = 5/12 we obtain the stationary points

Pa = (0, 0), Pb = (1,−1/2), Pc = (−1, 1/2),

Pd = (1/3,−1/6), Pe = (−1/3, 1/6).

Note now that, for α = 5/12,

∇2f =

[
2/3− 5x2

1 + 15/2x4
1 1

1 2

]

and that

∇2f(Pa) =

[
2/3 1
1 2

]
> 0

∇2f(Pb) = ∇2f(Pc) =

[
19/6 1
1 2

]
> 0

∇2f(Pd) = ∇2f(Pe) =

[
11/54 1

1 2

]
6≥ 0.

As a result, Pa, Pb and Pc are local minimizers, and Pd and Pe are saddle points.

c) Note that

− 5

12
x4
1 +

1

4
x6
1 = x4

1

(
1

4
x2
1 −

5

12

)

is radially unbounded. Hence

f(x1, x2) = (
1

3
x2
1 + x1x2 + x2

2) + x4
1

(
1

4
x2
1 −

5

12

)

is also radially unbounded. The global minimum of f is also a local minimum of f . Note that

f(Pa) = 0 f(Pb) = f(Pc) = −0.833 · · · .

Hence, Pb and Pc are both global minimizers, therefore the global minimizer is not unique.
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Exercise 7 Consider the problem of minimizing the function

f(x) = x− log x,

with x > 0.

a) Compute analytically the minimizer of f .

b) Write Newton’s iteration for the considered problem.

c) Consider the Newton’s iteration in part b) with initial point x0 = 1.99. Compute ten steps of the
Newton’s iteration. Argue that the resulting sequence converges to the minimizer of f . Show that
the sequence converges to the minimizer of f with quadratic speed of convergence.

d) Consider the Newton’s iteration in part b) with initial point x0 = 2.01. Compute five steps of the
Newton’s iteration. Argue that the resulting sequence diverges.

e) Consider the Newton’s iteration in part b). Show that

i) if the initial point x0 = 2 then xk = 0, for all k ≥ 1;

ii) if the initial point x0 = 0 then xk = 0, for all k ≥ 1;

iii) if the initial point x0 > 2 then xk < 0, for all k ≥ 1 and the sequence does not converge;

iv) if the initial point x0 ∈ (0, 2) then xk ∈ (0, 2), for all k ≥ 1 and the sequence converges to the
minimizer determined in part a).

Solution 7

a) The minimizer of f is obtained solving ∇f = 1− 1/x = 0, yielding x = 1. Note that x = 1 is indeed
a minimizer (a global one), because the function f is convex for all x > 0.

b) The Newton’s iteration is

xk+1 = xk − 1

∇2f(xk)
∇f(xk) = xk − x2

k(1−
1

xk
) = (2− xk)xk.

c) Let x0 = 1.99 then
x1 = 0.01990
x2 = 0.03940399
x3 = 0.07725530557208
x4 = 0.14854222890512
x5 = 0.27501966404215
x6 = 0.47440351247444
x7 = 0.72374833230079
x8 = 0.92368501609341
x9 = 0.99417602323134
x10 = 0.99996608129460.

The sequence is converging to x = 1, i.e. to the local minimizer of f . To establish quadratic speed
of convergence note that

Ek+1

E2
k

=
|xk+1 − 1|
|xk − 1|2 =

|(2− xk)xk − 1|
(xk − 1)2

= 1.

d) Let x0 = 2.01 then
x1 = −0.02010
x2 = −0.04060401
x3 = −0.08285670562808
x4 = −0.17257864492369
x5 = −0.37494067853109.

We then infer that the sequence is monotonically decreasing and lim
k→∞

xk = −∞.
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e) The first two points are trivial noting that

xk+1 = (2− xk)xk

and the right hand side of this equation is zero for xk = 0 or xk = 2, that is x = 0 and x = 2 are
equilibria of the above discrete-time system. Note now that if x0 > 2 then x1 < 0. Moreover if
xk < 0 then

xk+1 = (2− xk)xk < xk,

which proves the third claim. Finally, if xk ∈ (0, 2) then it is easy to verify that

0 < xk+1 = (2− xk)xk < 2.

Moreover, if xk = 1 then xk+1 = 1, hence x = 1 is an equilibrium of the discrete-time system
xk+1 = (2− xk)xk. Finally, if xk ∈ (1, 2)

0 < xk+1 < 1,

and if xk ∈ (0, 1)

xk < xk+1 < 1,

which shows convergence of the sequence to x = 1.

Exercise 8 Consider the problem of minimizing the function

f(x1, x2) =
1

2n+ 2
x2n+2
1 − x1x2 +

1

2
x2
2,

where n is a positive integer.

a) Compute all stationary points of the function.

b) Using second order sufficient conditions classify the stationary points determined in part a), i.e. say
which is a local minimizer, or a local maximizer, or a saddle point.

c) Show that the function f is radially unbounded and hence compute the global minimum of f . Is
the global minimizer unique?

d) Consider the point P0 = (0, 0) and the direction

d =

[
1
1

]
.

Show that the direction d is a descent direction for f at P0.

Solution 8

a) The stationary points of the function f are computed by solving the equation

0 = ∇f =

[
x2n+1
1 − x2

−x1 + x2

]
.

The second equation yields x2 = x1, hence the first equation becomes

0 = x2n+1
1 − x1 = x1(x

2n
1 − 1).

The (real) solutions of this equation are x1 = 0, x1 = 1 and x1 = −1. In summary, the function f
has three stationary points

Pa = (0, 0), Pb = (1, 1), Pc = (−1,−1).
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b) Note that (recall that n is a positive integer)

∇2f =

[
(2n+ 1)x2n

1 −1
−1 1

]
.

Hence

∇2f(Pa) =

[
0 −1

−1 1

]

which is an indefinite matrix, and

∇2f(Pb) = ∇2f(Pc) =

[
2n+ 1 −1
−1 1

]
> 0.

As a result Pa is a saddle point, and Pb and Pc are local minimizers.

c) Note that

f =
1

2n+ 2
x2n+2
1 − x1x2 +

1

2
x2
2 =

1

2n+ 2
x2n+2
1 − x2

1 +
(
x2
1 − x1x2 +

1

2
x2
2

)
.

The function
1

2n+ 2
x2n+2
1 − x2

1 = x2
1

(
1

2n+ 2
x2n
1 − 1

)

is radially unbounded, as a function of x1 alone, and the function x2
1 − x1x2 + 1

2
x2
2 is radially

unbounded as a function of x1 and x2. As a result the global minimum of f is also a local minimum.
Note that (recall again that n is a positive integer)

f(Pb) = f(Pc) = −1

2

n

n+ 1
< 0,

hence both Pb and Pc are global minimizers.

d) The point P0 coincides with the saddle point Pa. The function f along the direction d is given by

φ(α) = f(α, α) =
1

2n+ 2
α2n+2 − 1

2
α2.

Note that φ(0) = 0 and that φ(α) < 0 for α > 0 and sufficiently small (namely for all α ∈(
0, (n+ 1)

1
2n

)
, hence d is a descent direction for f at P0.

(Note that φ(α) is negative also for α ∈
(
−(n+ 1)

1
2n , 0

)
, i.e. −d is also a descent direction for f

at P0.)

Exercise 9 Newton’s method for the minimization of a function f : IR → IR is based on a quadratic
approximation of the function at a given point. An alternative way to construct a quadratic approximation
that does not require the computation of the second derivative is to consider an approximation based on the

knowledge of two points xk and xk−1 and of the values f(xk),
df(xk)

dx
and

df(xk−1)

dx
. Such an approximation

is given by

q(x) = f(xk) +
df(xk)

dx
(x− xk) +

df(xk−1)

dx
− df(xk)

dx
xk−1 − xk

(x− xk)
2

2
.

a) Show that the function q(x) is such that

q(xk) = f(xk),
dq(xk)

dx
=
df(xk)

dx
,

dq(xk−1)

dx
=
df(xk−1)

dx
.

b) Compute the stationary point x⋆ of q(x).

c) Consider the algorithm, known as the method of the false position, obtained by setting xk+1 = x⋆,
with x⋆ as in part b), and argue that this algorithm provides an approximation of Newton’s method
that does not require the computation of the second derivative of f .
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d) Show that the method of the false position applied to the minimization of a quadratic function
f = ax2 + bx+ c, with a > 0, coincides with Newton’s method.

e) Consider the function f =
x4

4
+ x. This function has a global minimizer at x = −1.

i) Show that the method of the false position yields the iteration

xk+1 = xk − (x3
k + 1)

1

x2
k−1 + xk−1xk + x2

k

.

ii) Evaluate
|Ek+1|
E2
k

=
|xk+1 + 1|
(xk + 1)2

and show that if lim
k→∞

xk = −1 then

lim
k→∞

|Ek+1|
E2
k

= 1.

Hence, quantify the speed of convergence of the method.

Solution 9

a) Setting x = xk in q(x) yields q(xk) = f(xk). Note that

dq(x)

dx
=
df(xk)

dx
+

df(xk−1)

dx
− df(xk)

dx
xk−1 − xk

(x− xk)

hence, setting x = xk and x = xk−1 yields

dq(xk)

dx
=
df(xk)

dx
,

dq(xk−1)

dx
=
df(xk−1)

dx
.

b) The stationary point x⋆ of q(x) is obtained by solving the equation

dq(x)

dx
= 0,

which yields

x⋆ = xk −



df(xk−1)

dx
− df(xk)

dx
xk−1 − xk




−1

df(xk)

dx
.

c) The method of the false position is therefore given by

xk+1 = xk −



df(xk−1)

dx
− df(xk)

dx
xk−1 − xk




−1

df(xk)

dx
.

This algorithm is an approximation of Newton’s method because the quantity

df(xk−1)

dx
− df(xk)

dx
xk−1 − xk

is an approximation of d2f(x)

dx2 at x = xk. Note however that, unlike Newton’s method, the method of
the false position does not need the computation of the second derivative: it uses an approximation.
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d) For quadratic functions one has
d2f(x)

dx2
= 2a

and
df(xk−1)

dx
− df(xk)

dx
xk−1 − xk

=
(2axk−1 + b)− (2axk + b)

xk−1 − xk
= 2a,

hence, for such functions, Newton’s method and the method of the false position coincide.

e) If f =
x4

4
+ x then

df(x)

dx
= x3 +1, and replacing in the expression of the considered method yields

xk+1 = xk − xk−1 − xk

(x3
k−1 + 1)− (x3

k + 1)
(x3

k + 1) = xk − xk−1 − xk

x3
k−1 − x3

k

(x3
k + 1).

and, recalling that
x3
k−1 − x3

k = (xk−1 − xk)(x
2
k−1 + xk−1xk + x2

k),

xk+1 = xk − (x3
k + 1)

1

x2
k−1 + xk−1xk + x2

k

.

Note that

xk+1 + 1 = xk + 1− (x3
k + 1)

1

x2
k−1 + xk−1xk + x2

k

= (xk + 1)(xk−1 + 1)
xk + xk−1 − 1

x2
k−1 + xk−1xk + x2

k

,

hence
|Ek+1|
E2
k

=

∣∣∣∣
xk−1 + 1

xk + 1

xk + xk−1 − 1

x2
k−1 + xk−1xk + x2

k

∣∣∣∣ .

If lim
k→∞

xk = −1 then also lim
k→∞

xk−1 = −1, hence
|Ek+1|
E2
k

= 1, which shows that the algorithm has

quadratic speed of convergence (if it converges).

Exercise 10 Consider the problem of minimizing the function

f(x1, x2, · · · , xn, y) =
1

4
x4
1 +

1

4
x4
2 + · · ·+ 1

4
x4
n − (x1 + x2 + · · ·+ xn)y +

n

2
y2,

where n is a positive integer.

a) Compute all stationary points of the function.

b) Using second order sufficient conditions classify the stationary points determined in part a), i.e. say
which is a local minimizer, or a local maximizer, or a saddle point.

c) Show that the function f is radially unbounded and hence compute the global minimum of f . Is
the global minimizer unique?

d) Consider the points Pp = (1, 1, · · · , 1, 1) and Pm = (−1,−1, · · · ,−1,−1) and the direction d from
Pp to Pm. Show that this is an ascent direction for f at Pp.

Solution 10

a) The stationary points of the function f are computed by solving the equations

0 = ∇f =




x3
1 − y
x3
2 − y
...

x3
n − y

−x1 − x2 − · · · − xn + ny



.
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The first n equations yield xi = y1/3, hence the last equation becomes

0 = −ny1/3 + ny = n(y − y1/3).

The solutions of this equation are y = 0, y = 1 and y = −1. In summary, the function f has three
stationary points

Pa = (0, · · · , 0, 0) Pb = (1, · · · , 1, 1) Pc = (−1, · · · ,−1,−1).

b) Note that

∇2f =




3x2
1 0 · · · 0 −1
0 3x2

2 · · · 0 −1

0
...

. . .
...

...
0 · · · 0 3x2

n −1
−1 −1 · · · −1 n



.

Hence

∇2f(Pa) =




0 0 · · · 0 −1
0 0 · · · 0 −1

0
...

. . .
...

...
0 · · · 0 0 −1

−1 −1 · · · −1 n



,

which is an indefinite matrix, hence Pa is a saddle point. Finally,

∇2f(Pb) = ∇2f(Pc) =

[
3I −v
−v′ n

]
,

where v′ =
[

1 · · · 1
]
. Exploiting the relation

[
I 0
v′/3 1

][
3I −v
−v′ n

] [
I v/3
0 1

]
=

[
3I 0
0 2/3n

]
,

we conclude that Pb and Pc are local minimizers.

c) The function f can be written as

f =
1

4
(x2

1 − 1)2 + · · ·+ 1

4
(x2

n − 1)2 +
1

2
(x1 − y)2 + · · ·+ 1

2
(xn − y)2 − n

4
.

Hence f + n/4 is a sum of squares, and all variables x1, x2, · · ·, xn, y are present in one of the
squares. As a result the function is radially unbounded and the local minimum of f is also a global
minimum. Note that

f(Pb) = f(Pc) = −n
4
< 0,

hence both Pb and Pc are global minimizers.

d) The direction from Pp to Pm is

d = Pm − Pp = −2




1
...
1
1


 .

The function f along the direction d at Pp is given by

φ(α) = f(1− 2α, · · · , 1− 2α, 1− 2α) =
n

4
(1− 2α)4 − n

2
(1− 2α)2 = −n

4
+ 4nα2 + · · ·

Note that φ(0) = −n/4 and that φ(α) > −n/4 for α > 0 and sufficiently small, hence d is an ascent
direction for f at Pp.
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Exercise 11 Consider the problem of minimizing the function

f(x1, x2) = x2
2 − δx2(x

2
1 + x2

2) + (x2
1 + x2

2)
2,

the level lines of which, for δ =
√
32/3 are plotted in the figure below.
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a) Compute all stationary points of the function as a function of δ.

b) Assume δ =
√
32/3.

i) Determine the stationary points of the function f , indicate them the figure, and classify the
stationary points i.e. say which is a local minimizer, or a local maximizer, or a saddle point,
without computing the Hessian matrix of f .

ii) Determine, from inspection of the figure, a set of points such that the gradient algorithm with
exact line search initialized at such points yields a sequence which converges to the global
minimizer in one step. Sketch the obtained set on the figure.

iii) Determine, analytically, all points such that the gradient algorithm with exact line search
initialized at such points yields a sequence which converges to the global minimizer in one
step. Sketch the obtained set on the figure.

Solution 11

a) The stationary points of the function f are computed by solving the equations

0 = ∇f =

[
2x1(2x

2
1 − δx2 + 2x2

2)

2x2 − δx2
1 − 3δx2

2 + 4x2x
2
1 + 4x3

2

]
.

From the first equation we have x1 = 0 or x2
1 = −x2

2+
δ
2
x2. Replacing x1 = 0 in the second equation

yields

0 = x2(2− 3δx2 + 4x2
2).
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Replacing x2
1 = −x2

2 +
δ

2
x2 in the second equation yields

0 = −1

2
x2(δ − 2)(δ + 2).

In conclusion the function f has the following stationary points.

• P0 = (0, 0), for any value of δ.

• P1 = (0,
3δ +

√
9δ2 − 32

8
) and P2 = (0,

3δ −
√
9δ2 − 32

8
) if δ2 ≥ 32

9
. Note that if δ = ±

√
32
3

then P1 = P2.

• If δ = ±2 then all points in the set x2
1 + x2

2 − δ
2
x2 = x2

1 + x2
2 ∓ x2 = 0 are stationary points.

b) Consider now the case in which δ =

√
32

3
.

i) The only stationary points are P0 and P1 = P2 = (0,
√
2
2
). From the figure we conclude that

P0 is a local minimizer, and P1 = P2 is a saddle point. (The Hessian matrix is singular at P0

and P1, hence it cannot be used to classify these points.)

ii) Note that the gradient of f on the x2-axis is given by

∇f(0, x2) =

[
0

x2(2−
√
32x2 + 4x2

2)

]
.

The gradient of f on the x2-axis is a direction of ascent which is parallel to the x2-axis.
Therefore, the gradient algorithm with exact line search yields the global minimizer in one
step for all initial points on the x2-axis.

iii) The set of points such that the gradient algorithm with exact line search yields a sequence
which converges to the global minimizer in one step is obtained eliminating α, i.e. the line
search parameter, from the equation

0 = x− α∇f(x).

This yields the set of points described by

x1(2
√
2(x2

1 + x2
2)− 3x2) = 0,

i.e. the x2-axis and the circle

x2
1 + x2

2 −
3

4

√
2x2 = 0,

which is a circle centered at P = (0, 3
8

√
2) and with radius equal to 3

8

√
2). The set of all

points with the requested property is indicated on the figure with “dots”.
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Exercise 12 Consider the problem of minimizing the function

f(x1, x2) = 4x2
1 − 2x4

1 +
1

3
x6
1 + x1x2 +

1

4
x2
2.

a) Compute all stationary points of the function.

b) Using second order sufficient conditions classify the stationary points determined in part a), i.e. say
which is a local minimizer, or a local maximizer, or a saddle point.

c) Show that the function f is radially unbounded and hence compute the global minimum of f . Is
the global minimizer unique?

d) Using the results of parts a), b) and c) sketch the level lines of the function f .

Solution 12

a) The stationary points of the function f are computed by solving the equations

0 = ∇f =

[
8x1 − 8x3

1 + 2x5
1 + x2

x1 +
1
2
x2

]
.

The second equation yields x2 = −2x1, which replaced in the first equation yields

0 = 2x1(x1 − 1)(x1 + 1)(x2
1 − 3).

As a result, the function f has five stationary points

P1 = (0, 0), P2 = (−1, 2), P3 = (1,−2), P4 = (
√
3,−2

√
3), P5 = (−

√
3, 2

√
3).

b) Note that

∇2f =




8− 24x2
1 + 10x4

1 1

1
1

2


 .
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As a result

∇2f(P1) =

[
8 1
1 1

2

]
,

which is a positive definite matrix, hence P1 is a local minimizer;

∇2f(P2) = ∇2f(P3)

[
−6 1
1 1

2

]
,

which is an indefinite matrix, hence P2 and P3 are saddle points;

∇2f(P4) = ∇2f(P5)

[
26 1
1 1

2

]
,

which is a positive definite matrix, hence P4 and P5 are local minimizers.

c) The function f can be written as

f =
(
x1 +

1

2
x2

)2

+
x2
1

3

(
x2
1 − 3

)2
.

Hence f is a sum of squares, and all variables x1 and x2 are present in one of the squares. As a
result the function is radially unbounded and the local minimum of f is also a global minimum.
Note that

f(P1) = f(P4) = f(P5) = 0

hence P1, P4 and P5 are all global minimizers.

d) The level lines of f can be sketched using the following considerations.

• Around the minimizers the level lines are closed.

• The value of f at the saddle points P2 and P3 is 4/3. There is a level line that connects the
saddle points. Close to the saddle points this level line is composed of two curves.

A sketch of the level lines is in the figure below.
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Exercise 13 Consider the problem of minimizing the function

f(x1, x2) =
1

2
x2
1

(
1

6
x2
1 + 1

)
+ x2 arctan x2 − 1

2
ln(x2

2 + 1).
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a) Compute the unique stationary point of the function.

b) Using second order sufficient conditions show that the stationary point determined in part a) is a
local minimizer.

c) Consider now the minimization of the function using Newton’s method.

i) Write Newton’s iteration for the considered problem.

ii) Show that Newton’s direction is a descent direction for f at any point which is not a stationary
point.

iii) Compute four steps of Newton’s algorithm from the initial point (1, 0.5). Compute four steps
of Newton’s algorithm from the initial point (1, 2).

iv) Discuss why the second sequence computed in part c.iii) does not converge to the global
minimizer, despite the fact that Newton’s direction is always a descent direction. Propose
a simple modification of Newton’s iteration that would guarantee global convergence to the
minimizer.

Solution 13

a) The stationary points of the function f are computed by solving the equations

0 = ∇f =

[
1

3
x3
1 + x1

arctan x2

]
.

These equations have the unique solution x1 = x2 = 0, which is therefore the unique stationary
point of f .

b) Note that

∇2f =



x2
1 + 1 0

0
1

1 + x2
2


 .

Hence ∇2f(0, 0) = diag(1, 1), which is a positive definite matrix. The stationary point is a local
minimizer.

c) i) Newton’s iteration is
xk+1 = xk − [∇2f(xk)]

−1∇f(xk)

hence

xk+1,1 =
2x3

k,1

3(x2
k,1 + 1)

, xk+1,2 = xk,2 − (1 + x2
k,2) arctan xk,2.

ii) Newton’s direction is
d = −[∇2f(x)]−1∇f(x).

Note that
∇f ′ d = −∇f ′[∇2f(x)]−1∇f(x) < 0,

for all points such that ∇f(x) 6= 0, since ∇2f is positive definite. As a result, d is a descent
direction for f for all x 6= 0.

iii) A direct computation yields

x0 = (1, 1/2), x1 = (1/3,−0.079), x2 = (0.022, 0.00033),

x3 = (0.000007,−2.5 10−11), x4 = (2.6 10−16, 0),

and
x0 = (1, 2), x1 = (1/3,−3.53), x2 = (0.022, 13.95),

x3 = (0.000007,−279.34), x4 = (2.6 10−16, 1.2 105).
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iv) The second sequence does not converge since Newton’s method guarantee only local con-
vergence properties. To achieve global convergence, since Newton’s direction is a descent
direction for f at any x 6= 0, it is enough to introduce a line search parameter, i.e. to consider
the iteration

xk+1 = xk − α[∇2f(xk)]
−1∇f(xk),

with α > 0, and determined using a line search algorithm.

Exercise 14 Consider the problem of minimizing a function of n variables x1, x2, · · ·, xn, defined as

f(x1, · · · , xn) = f1(x1) f2(x2) · · · fn(xn),

that is the function f is the product of the n functions fi, each of the variable xi only.

a) Assume that all functions fi are such that

fi(xi) > 0

for all xi and that there exist unique x⋆
i such that x⋆

i is a stationary point of fi.

i) Compute the stationary point x⋆ of the function f .

ii) Using second order sufficient conditions show that the stationary point x⋆ of the function f
is a strict local minimizer if and only if all x⋆

i are strict local minimizers of the functions fi.

b) Assume n = 3, that is consider the function

f(x1, x2, x3) = f1(x1) f2(x2) f3(x3).

Assume that the functions fi do not have stationary points but that there exists, for i = 1, 2, 3, a
unique point x◦

i such that
fi(x

◦
i ) = 0

and
fi(xi) 6= 0

for all xi 6= x◦
i .

i) Compute all stationary points of the function f .

ii) Show that the Hessian matrix of f at any stationary point is either identically zero or it has
positive and negative eigenvalues. Hence argue that none of the stationary point can be a
strict local minimizer.
(Hint: recall that a symmetric matrix has real eigenvalues and that the trace of a matrix, that
is the sum of its diagonal entries, is equal to the sum of its eigenvalues.)

Solution 14

a) Consider the function f .

i) The stationary points of the function f are computed by solving the equations

0 = ∇f =




∂f1
∂x1

f2 · · · fn

f1
∂f2
∂x2

f3 · · · fn

...

f1 f2 · · · ∂fn
∂xn




.

Since all fi’s are positive, and have a unique stationary point, the only stationary point of f
is the point

x⋆ = (x⋆
1, x

⋆
2, · · · , x⋆

n).
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ii) Note that, for i 6= j,
∂2f

∂xi∂xj
=
∂fi
∂xi

∂fj
∂xj

M

where M is a positive function, hence

∂2f

∂xi∂xj
(x⋆) = 0.

As a result, the Hessian matrix of the function f at x⋆ is

∇2f(x⋆) = diag

(
∂2f1
∂x2

1

(x⋆
1) f2(x

⋆
2) · · · fn(x⋆

n), · · · , f1(x⋆
1) f2(x

⋆
2) · · · ∂

2fn
∂x2

n
(x⋆

n)

)
.

This implies that the function f has a strict local minimizer at x⋆ if and only if all functions
fi have a strict local minimizer at x⋆

i .

b) Consider the function f with n = 3.

i) The stationary points of the functions f are the solution of the equations

0 = ∇f =




∂f1
∂x1

f2f3

f1
∂f2
∂x2

f3

f1f2
∂f3
∂x3



.

These equations admit infinitely many solutions given by

x◦
12 = (x◦

1, x
◦
2, x̄3), x◦

13 = (x◦
1, x̄2, x

◦
3), x◦

23 = (x̄1, x
◦
2, x

◦
3),

where x̄1, x̄2 and x̄3 are arbitrary values.

ii) The Hessian matrix of f is

∇2f =




∂2f1
∂x2

1

f2 f3
∂f1
∂x1

∂f2
∂x2

f3
∂f1
∂x1

∂f3
∂x3

f2

∂f1
∂x1

∂f2
∂x2

f3
∂2f2
∂x2

2

f1 f3
∂f2
∂x2

∂f3
∂x3

f1

∂f1
∂x1

∂f3
∂x3

f2
∂f2
∂x2

∂f3
∂x3

f1
∂2f3
∂x2

3

f1 f2




.

Hence

∇2f(x◦
12) =

[
0 α 0
α 0 0
0 0 0

]
,

where

α =
∂f1
∂x1

(x◦
1)

∂f2
∂x2

(x◦
2) f3(x̄3).

The function α is zero for x̄3 = x◦
3 and it is non-zero otherwise. Hence, ∇2f(x◦

12) is either
identically zero or has trace zero, which means that it has a positive and a negative eigenvalue.
In both cases, the points x◦

12 cannot be local strict minimizers.
Similar considerations apply to x◦

13 and x◦
23.

Exercise 15 An alternative way to introduce Newton’s method for the solution of a nonlinear equation
is to consider the evaluation of the integral

f(x) = f(xk) +

∫ x

xk

ḟ(t)dt,
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where ḟ denotes the derivative of the function f , by means of the so-called Newton-Cotes quadrature
formula of order zero (the rectangular rule) yielding

f(x) ≈ f(xk) + (x− xk)ḟ(xk),

setting x = xk+1 and replacing the ≈ sign with an = sign, thus yielding

f(xk+1) = f(xk) + (xk+1 − xk)ḟ(xk),

and setting f(xk+1) = 0, thus obtaining the iteration

xk+1 = xk − f(xk)

ḟ(xk)
.

a) Consider the evaluation of the integral by means of the Newton-Cotes quadrature formula of order
one (the trapezoidal rule), that is

∫ x

xk

ḟ(t)dt ≈ x− xk

2

(
ḟ(xk) + ḟ(x)

)
.

i) Determine a new iteration for the solution of the nonlinear equation f(x) = 0. Note that the
obtained iteration, which is a modified Newton’s iteration, is implicitly defined, that is xk+1

is a function of xk and of ḟ(xk+1).

ii) An explicit iteration can be obtained replacing ḟ(xk+1) with ḟ(x
⋆), where

x⋆ = xk − f(xk)

ḟ(xk)
.

Write the expression of the resulting modified Newton’s iteration.

b) Consider the problem of determining the square root of 2.

i) Write Newton’s iteration for the solution of this problem. Let x0 = 1 and apply three steps of
Newton’s iteration, that is compute the values x1, x2, and x3 resulting from the application
of Newton’s iteration with the given initial point. Evaluate the absolute error ek = |

√
2−xk|.

ii) Write the modified Newton’s iteration for the solution of this problem. Let x0 = 1 and apply
three steps of the modified Newton’s iteration, that is compute the values x1, x2, and x3

resulting from the application of the modified Newton’s iteration with the given initial point.
Evaluate the absolute error ek = |

√
2− xk|.

iii) Compare the Newton’s iteration and the modified Newton’s iteration in terms of convergence
speed and computational complexity.

Solution 15

a) i) Consider the relation

f(x) = f(xk) +
x− xk

2
(ḟ(x) + ḟ(xk)).

Setting x = xk+1 and f(x) = 0 yields

0 = f(xk) +
xk+1 − xk

2
(ḟ(xk+1) + ḟ(xk)),

hence solving for xk+1 provides the iteration

xk+1 = xk − 2
f(xk)

ḟ(xk+1) + ḟ(xk)

ii) The modified Newton’s iteration is

xk+1 = xk − 2
f(xk)

ḟ(xk − f(xk)/ḟ(xk)) + ḟ(xk)
.
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b) To determine the square root of 2 consider the equation x2 − 2 = 0.

i) Newton’s iteration is given by

xk+1 = xk − 1

2

x2
k − 2

xk
.

The sequence generated by Newton’s iteration is

x0 = 1, x1 = 1.5, x2 = 1.416666667, x3 = 1.414215686,

and this yields the sequence of the absolute error

e0 = 0.414213562, e1 = 0.085786438, e2 = 0.002453105, e3 = 0.000002124.

ii) The modified Newton’s iteration is

xk+1 = xk − 2(x2
k − 2)xk

3x2
k + 2

.

The sequence generated by the modified Newton’s iteration is

x0 = 1, x1 = 1.4, x2 = 1.414213198, x3 = 1.414213563,

and this yields the sequence of the absolute error

e0 = 0.414213562, e1 = 0.014213562, e2 = 3.64 × 10−7, e3 = 1× 10−9.

iii) The modified Newton’s iteration is much faster (this is a general conclusion) and has similar
complexity than the (classical) Newton’s iteration.

Exercise 16 Consider the function

f(x) = x4
1 + x1x2 +

1

2
x2
2.

a) Compute the stationary points of the function.

b) Using second order sufficient conditions classify the stationary points determined in part a), that is
say which is a local minimizer, or a local mazimizer, or a saddle point.

c) Sketch on the (x1, x2)-plane the level lines of the function f .

d) Consider the point P0 = (0, 0).

i) Determine a direction d0 which is a descent direction for f at P0.

ii) Consider the problem of performing an exact line search along the direction d0 starting from
P0. Determine a solution to such a problem.

Solution 16

a) The stationary points of the function f are computed by solving the equations

0 = ∇f =

[
4x3

1 + x2

x1 + x2

]
.

Replacing the second equation in the first yields x1(4x
2
1 − 1) = 0. Hence, the stationary points are

P1 = (0, 0), P2 =
(
1

2
,−1

2

)
, P2 =

(
−1

2
,
1

2

)
.
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b) The Hessian matrix of the function f is

∇2f(x) =

[
12x2

1 1
1 1

]
.

Note that

∇2f(P1) =

[
0 1
1 1

]

is indefinite and

∇2f(P2) = ∇2f(P3) =

[
3 1
1 1

]

is positive definite. Hence P2 and P3 are local minimizers, and P1 is a saddle point.

c) The level lines of f can be sketched using the following considerations.

• Around the minimizers the level lines are closed.

• The value of f at the saddle point P1 is 0.

• The value of f at the local minimizers P2 and P3 is −1/16. There is a closed level line which
goes through the saddle point and encircles both local minimizers.

A sketch of the level lines is in the figure below.

d) Note that ∇f(P0) = 0, hence for any direction d the scalar product ∇′f d is zero, i.e. it is not
possible to use first order sufficient conditions to establish if a direction is a descent direction.

i) Let, for example, d0 = [1,−1]′ and consider the restriction of the function f along d0, with
initial point P0, namely

f(P0 + αd0) = α2
(
−1

2
+ α2

)
.

For any α > 0 and sufficiently small (namely α ∈ (0, 1/
√
2))

f(P0) > f(P0 + αd0),

hence d0 is a descent direction for f at P0.

ii) To solve an exact line search problem along d0 at P0 one has to find the global minimizer, if
it exists, of f(P0 + αd0). Note that the function

f(P0 + αd0) = α2(−1/2 + α2)

is radially unbounded (and bounded from below), hence possesses a global minimizer, which
is a stationary point. The stationary points of this function are α = 0 (local maximizer) and
α = ±1/2 (local minimizer). Hence, an exact line search along d0, starting at P0, gives either
the point P2 or the point P3.
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Exercise 17 Consider the function

f(x1, x2) = sin(x2
1 + x2

2).

a) Sketch on the (x1, x2)-plane the level lines of the function f .

b) Compute the stationary points of the function.

c) Explain why second order sufficient conditions of optimality are inadequate to classify some of the
stationary points of the functions.

d) Consider the change of variable

x1 = ρ cos θ, x2 = ρ sin θ,

with ρ ≥ 0 and θ ∈ (−π, π].

i) Rewrite the function f in the new variables. Note that the function depends only upon the
variable ρ.

ii) Compute the stationary points of the function f as a function of ρ and classify these stationary
points.

iii) Exploiting the results in part d.ii) classify the stationary points of the function f .

Solution 17

a) Note that the function is constant on any circle centered at the origin, i.e. on any set of the form
x2
1 + x2

2 = R2. A sketch of the level lines is therefore as in the figure below.

b) The stationary points of the function f are computed by solving the equations

0 = ∇f =

[
2x1 cos(x

2
1 + x2

2)

2x2 cos(x
2
1 + x2

2)

]
.

Hence, the point (0, 0) is a stationary point and all points such that

x2
1 + x2

2 =
π

2
+ kπ,

with k integer, are stationary points.

c) The Hessian matrix of the function f is

∇2f(x) = 2 cos(x2
1 + x2

2)I − 4 sin(x2
1 + x2

2)

[
x2
1 x1x2

x1x2 x2
2

]
.

Note that

∇2f(0) =

[
2 0
0 2

]

is positive definite, hence the point (0, 0) is a local minimizer. To classify the stationary points such
that x2

1 + x2
2 = π

2
+ kπ, note that at such points Pk

∇2f(Pk) = ∓4

[
x1

x2

] [
x1 x2

]
,

hence ∇2f(Pk) is singular, and this does not enable the use of second order sufficient conditions of
optimality (which require the Hessian to be non-singular).

d) i) The function f in the new variables is given by

f(ρ, θ) = sin ρ2,

hence it is a function of ρ only.
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ii) The stationary points of the function sin ρ2 are all points such that

df

dρ
= 2ρ cos ρ2 = 0.

These are given by

ρ = 0 ρ2 =
π

2
+ kπ,

with k any non-negative integer.

iii) Note that
d2f

dρ2
= 2 cos ρ2 − 4ρ2 sin ρ2,

hence the point ρ = 0 is a local minimizer, the points

ρ2 =
π

2
+ 2kπ,

with k any non-negative integer, are local maximizers, and the points

ρ2 =
π

2
+ (2k + 1)π,

with k any non-negative integer, are local minimizers. This implies that the point (x1, x2) =
(0, 0) is a local strict minimizer, the points (x1, x2) such that

x2
1 + x2

2 =
π

2
+ 2kπ,

with k any non-negative integer, are local non-strict maximizers, and the points (x1, x2) such
that

x2
1 + x2

2 =
π

2
+ (2k + 1)π,

with k any non-negative integer, are local non-strict minimizers.
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Exercise 18 A nonlinear least-squares problem is an unconstrained optimization problem of the form

min
x

1

2

m∑

i=1

r2i (x),
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where x ∈ IRn. The functions r1, r2, · · ·, rm are called residuals and the objective function can be rewritten
as 1

2
r′(x)r(x), with

r(x) =

[
r1(x)
· · ·

rm(x)

]
.

a) Write Newton’s iteration for the solution of the considered least-square problem.

b) Gauss-Newton’s iteration for the solution of the considered least-square problem is given by

x(k+1) = x(k) − [J ′(x(k))J(x(k))]
−1J ′(x(k))r(x(k)),

where

J(x) =




∂r1
∂x1

· · · ∂r1
∂xn

...
. . .

...
∂rm
∂x1

· · · ∂rm
∂xn




and x(k) =
[
xk,1, · · · xk,n

]′
. Discuss the differences between Newton’s iteration and Gauss-

Newton’s iteration.
(Hint: consider the difference between the Hessian of 1

2
r′(x)r(x) and the matrix J ′(x)J(x).)

Discuss under what conditions the Gauss-Newton direction

dGN = −[J ′(x)J(x)]−1J ′(x)r(x)

is a descent direction.

c) Assume m = 2, x = (x1, x2) and

r1(x) = x1 + x2 − x1x2 + 2, r2(x) = x1 − ex2 .

i) Sketch on the (x1, x2)-plane the set of points r1(x) = 0 and r2(x) = 0, hence argue that the
considered least-square problem has two (global) solutions. Find an approximation of these
global solutions using graphical considerations.

ii) Write explicitly Gauss-Newton’s iteration for the considered problem.

iii) Compute three iterations of Gauss-Newton’s methods from the initial conditions (0, 0). Eval-
uate the residuals at (0, 0) and at the last iteration.

iv) Comment on the convergence speed and complexity of Gauss-Newton’s method.

Solution 18

a) Newton’s method for the minimization of the function

f(x) =
1

2
r′(x)r(x)

is described by the iteration

xk+1 = xk − [∇2f(xk)]
−1∇f(xk),

where

∇f =
[
∂r

∂x

]′
r = J ′(x)r

(with J =
∂r

∂x
, as defined above) and

∇2f =
[
∂r

∂x

]′ [ ∂r
∂x

]
+

m∑

i=1

ri∇2ri.
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b) The difference between Newton’s method and Gauss-Newton’s method is in the matrix that it is
inverted. In Newton’s method this is the Hessian of the function to be minimized, in Gauss-Newton’s
method this is one term of the Hessian, which can be computed using only first derivatives. Gauss-
Newton’s direction is a descent direction if

∇′fdGN = −r′(x)J(x)[J ′(x)J(x)]−1J ′(x)r(x) < 0,

which holds at all points in which J(x) is full rank and r(x) 6= 0.

c) i) The sets r1(x) = r2(x) = 0 are displayed in the figure below. These sets have two points of
intersection, hence the least square problem has only two solutions, which are both global min-
imizers of the function 1

2
r′r. From the graph one sees that the minimizers are approximately

given by the points (0.1,−2.3) and (5.4, 1.7).

ii) Note that

J(x) =

[
1− x2 1− x1

1 −ex2

]

and

dGN (x) = − 1

(x1 − 1) + ex2(x2 − 1)

[
−x2e

x2 + x1x2e
x2 − 2ex2x1 − ex2 + x2

1 − x1

−ex2 + x2e
x2 − 2− x2

]
.

Hence, Gauss-Newton iteration can be written as

xk+1 = xk + dGN (xk).

iii) Let x(0) = (0, 0). The residuals at (0, 0) are r1(0) = 2 and r2(0) = −1. The first three
elements of the sequence generated by Gauss-Newton’s iteration are

x(1) = (−0.5,−1.5), x(2) = (0.108430,−2.014050), x(3) = (0.093409,−2.314073),

and the value of the residuals after three iterations are

r1(x(3)) = −0.0045064193, r2((3)) = −0.00544788272.

iv) It is worth noting the fast convergence rate despite the fact that the iteration does not use
second derivatives and a line search parameter.
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Exercise 19 Consider the function

f(x1, x2) =
1

2
x2
1

(
1

6
x2
1 + 1

)
+ x2 arctan x2 − 1

2
ln(x2

2 + 1).

a) Compute the unique stationary point of the function.

b) Using second order sufficient conditions of optimality show that the stationary point determined in
part a) is a local minimizer. Show, in addition, that the function is convex. Finally, show that the
local minimizer is a global minimizer.
(Hint: convexity of a function f is implied by the condition ∇2f(x) > 0 for all x.)

c) Consider the problem of minimizing the function f using Newton’s method.

i) Write Newton’s iteration for the minimization of the function f .

ii) Perform 4 steps of Newton’s iteration with starting point

(x1, x2) = (1, 2).

d) Consider the function

f2(x2) = x2 arctan x2 −
1

2
ln(x2

2 + 1).

i) Using the iteration derived in part c.i) write Newton’s iteration for the minimization of the
function f2.

ii) Write the Newton’s iteration in part d.i) in the form

x2(k + 1) = ψ(x2(k)).

Write explicitly the function ψ.

iii) Plot on the same graph the functions x2 and ψ(x2). Exploiting the graph explain why New-
ton’s iteration for the minimization of f2 converges for initial conditions sufficiently close to
zero, and diverges otherwise.
(Hint: use the graph to execute Newton’s iteration graphically.)

e) Exploiting the results in part d) and the fact that the function f is the sum of two functions of
one variable each, determine (qualitatively) for which initial points the Newton’s iteration for the
minimization of f converges to the minimizer.

Solution 19

a) The stationary points of the function f are computed by solving the equations

0 = ∇f =

[
∂f1
∂x1

∂f2
∂x2

]
=

[
1
3
x1(x

2
1 + 3)

arctan x2

]
.

Hence, the point (0, 0) is the unique stationary point.

b) The Hessian matrix of the function f is

∇2f(x) =

[
x2
1 + 1 0
0 1

1+x2
2

]
.

Note that

∇2f(0) =

[
1 0
0 1

]

is positive definite, hence the point (0, 0) is a local minimizer. In addition, ∇2f > 0 for all (x1, x2),
hence the function is convex. For convex function, a stationary point is a global minimizer, hence
(0, 0) is a global minimizer.
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c) i) Newton’s iteration, considering that the function f is the sum of a function of x1 and of a
function of x2, gives two decoupled equations, namely

xk+1
1 =

2

3

x3
1

1 + x2
1

xk+1
2 = x2 − (1 + x2

2) arctan x2.

ii) The first five elements of the sequences {xk
1} and {xk

2} are

x0
1 = 1, x1

1 = 1/3, x2
1 = 1/45, x3

1 = 1/136755, x4
1 = 1/3836373661058445 ≈ 0,

and

x0
2 = 2, x1

2 = −3.5357, x2
2 = 13.95095909, x3

2 = −279.3440667, x4
2 = 122016.9990.

d) i) The iteration is the same as the “x2” iteration in part c.i).

ii) The function ψ is given by

ψ(x2) = x2 − (1 + x2
2) arctan(x2).

iii) The graphs of the considered functions are displayed in the figure below. One can use the
graph to show how Newton’s iteration works. In fact, pick a point xk

2 on the x2-axis, and lift it
on the graph of the function ψ. Then move the point horizontally on the graph of the function
x2, and then vertically on the x2-axis. This is the point xk+1

2 . Iterating the procedure one
can construct the sequence {xk

2}. Using this approach, one concludes that if x0
2 is sufficiently

close to zero the iteration yields a sequence converging to x2 = 0. If |x2| is large, then the
sequence diverges.

e) As shown in part c.i), Newton’s iteration is composed of two decoupled iterations. The iteration
for x1 yields a globally converging sequence, whereas the iteration for x2 converges only for |x0

2|
sufficiently small (to be precise, for |x0

2| < 1.39... ). Hence, for all initial points (x0
1, x

0
2) such that

|x0
2| < 1.39... , the iteration yields a sequence converging to the global minimizer.
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Exercise 20 The company XY Z has invested £20000 to develop a new product. The product can be
manufactured for £2 per unit. The company then performs a marketing research. The conclusion of the
research is that if the company spends £a on advertising then it can sell the product at price £p per unit
and it will sell 2000 + 4

√
a− 20p units.
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a) Compute the revenue for sales as a function of a and p.

b) Compute the overall costs associated to the production and commercialization of the product, that
is the development cost plus the production cost and the advertising cost, as a function of a and p.

c) Compute the company’s profit as a function of a and p.

d) The company wishes to select a and p to maximize the profit. Pose this problem as an unconstrained
optimization problem (disregard the non-negativity conditions on a and p).

e) Compute the unique stationary point of the profit. Using second order sufficient conditions of
optimality show that the stationary point is a local maximizer.

f) Assume that the company is forced to fix the sale price of the product to p = p̃, with p̃ > 2.

i) Determine the optimal advertising cost as a function of p̃.

ii) Determine the optimal profit as a function of p̃.

iii) Plot the optimal profit as a function of the fixed price p̃ and show that as p̃ increases the
profit becomes negative.

Solution 20

a) The revenue for sales is given by

revenue = p(2000 + 4
√
a− 20p).

b) The costs are
production cost = 2(2000 + 4

√
a− 20p),

development cost = 20000,

advertising cost = a.

Hence
total cost = 24000 + 8

√
a− 40p + a.

c) The profit is given by

profit = p(2000 + 4
√
a− 20p) − (24000 + 8

√
a− 40p+ a).

d) The optimization problem is

max
a,p

= p(2000 + 4
√
a− 20p)− (24000 + 8

√
a− 40p+ a).

e) The statiory points of the profit are the solutions of the equations

0 =
∂profit

∂a
= 2

p√
a
− 4√

a
− 1, 0 =

∂profit

∂p
= 2040 + 4

√
a− 40p.

The only solution is

a⋆ =
60025

4
= 15006.25, p⋆ =

253

4
= 63.25.

The Hessian of the profit at the stationary point is

H(a⋆, p⋆) = −




2

60025
− 4

245

− 4

245
40


 ,

which is negative definite, hence the point (a⋆, p⋆) is a local maximizer.
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f) The profit for fixed price is

profit fix price = p̃(2000 + 4
√
a− 20p̃)− (24000 + 8

√
a− 40p̃ + a).

i) The optimal advertising cost ã⋆ is given by the solution of the equation

0 =
∂profit fix price

∂a
,

which gives ã⋆ = 4(p̃− 2)2.

ii) The resulting optimal profit is

profit fix price⋆ = 2024p̃ − 16p̃2 − 23984.

iii) The optimal profit as a function of the fixed price p̃ is displayed in the graph below. Note
that as p̃ increases the optimal profit becomes negative (because of the term −16p̃2).

Exercise 21 Consider the function

f(x) = (x1 − 2)4 + (x1 − 2)2x2
2 + (x2 + 1)2.

a) Compute the unique stationary point x⋆ of the function f .

b) Using second order sufficient conditions of optimality show that the stationary point determined
in part a) is a local minimizer. Hence, show that f is radially unbounded and that the stationary
point determined in part a) is the global minimizer of f .

c) Write the modified Newton’s iteration for the minimization of the function f given by

xk+1 = xk −
[
∇2f(x⋆)

]−1 ∇f(xk).

d) Run five steps of the modified Newton’s iteration in part c) from the starting point (1.5, 0).

e) Run four steps of the modified Newton’s iteration in part c) from the starting point (1, 0).

f) Show that the research directions generated by the modified Newton’s iteration in part c) are descent
directions satisfying the condition of angle. Explain why the iteration is not globally convergent.

Solution 21

a) The stationary points of the function f are computed by solving the equations

0 = ∇f =

[
2(x1 − 2)(2(x1 − 2)2 + x2

2)

2x2
1x2 − 8x1x2 + 10x2 + 2

]
.

As a result, the point x⋆ = (2,−1) is the unique stationary point.
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b) The Hessian matrix of the function f is

∇2f(x) =

[
12(x1 − 2)2 + 2x2

2 4(x1 − 2)x2

4(x1 − 2)x2 2(x1 − 2)2 + 2

]
,

hence

∇2f(x⋆) =

[
2 0
0 2

]
.

Since ∇2f(x⋆) > 0, x⋆ is a minimizer of f . Note now that

0 ≤ (x1 − 2)4 + (x2 + 1)2 ≤ f,

and the function (x1 − 2)4 + (x2 + 1)2 takes non-negative values and it is radially unbounded (it is
the sum of two squares, one involving x1 and one involving x2). Hence, f is radially unbounded,
and since f(x⋆) = 0, x⋆ is the global minimizer of f .

c) The modified Newton’s iteration is given by

xk+1 = xk − 1

2
∇f(xk) =

[
xk,1 − (xk,1 − 2)(2(xk,1 − 2)2 + x2

k,2)

−4xk,2 − xk,2x
2
k,1 + 4xk,2xk,1 − 1

]
.

d) The points generated by the modified Newton’s iteration from the starting point x0 = (3/2, 0) are

x1 = (1.75,−1), x2 = (2.03125,−0.9375), x3 = (2.003723145,−.9990844731),

x4 = (2.000006711,−.9999861507), x5 = (2.000000000,−1.000000000).

e) The points generated by the modified Newton’s iteration from the starting point x0 = (1, 0) are

x1 = (3,−1), x2 = (0, 0), x3 = (16,−1), x4 = (−5486, 195).

f) The research direction used in the modified Newton’s iteration is −1/2 ∇f(xk), which is nothing
else than the direction of the anti-gradient, hence it is a descent direction satisfying the condition
of angle. The reason why the method is not globally convergent is that the line search parameter is
fixed to α = 1/2, and this may not yield a descent algorithm at each step.

Exercise 22 Consider the function

f(x) =
1

2
x2
1 +

m

2
x2
2,

with m > 0. The function has a global minimizer at x⋆ = 0.

a) Show that the gradient algorithm with exact line search for the function f can be written as

xk+1 = xk − x2
k,1 +m2x2

k,2

x2
k,1 +m3x2

k,2

[
xk,1

m xk,2

]

b) Let m = 9 and x0 = [9, 1]′. Show that the sequence of points generated by the gradient algorithm
is given by

xk =

[
9

(−1)k

]
(0.8)k.

(Hint: assume that for the given values of m and x0 the quantity

x2
1 +m2x2

2

x2
1 +m3x2

2

remains constant for all iterations of the algorithm.)
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c) Compute the speed of convergence of the sequence generated by the algorithm and in particular
show that

‖xk+1 − x⋆‖
‖xk − x⋆‖

= constant

for every k, where ‖v‖ =
√
v′v.

Solution 22

a) Note that

∇f =

[
x1

mx2

]
,

hence the gradient algorithm is described by the iteration

xk+1,1 = xk,1 − αxk,1, xk+1,2 = xk,2 − αm xk,2.

Replacing xk+1 in f yields

f(xk+1) =
1

2

(
x2
k,1 +m x2

k,2

)
− α

(
x2
k,2 +m2x2

k,2

)
+

1

2

(
x2
k,2 +m3 x2

k,2

)
α2.

To obtain the exact linear search parameter one has to compute the stationary point of f(xk+1) as
a function of α (since f(xk+1) is convex in α), that is

α⋆ =
x2
k,1 +m2x2

k,2

x2
k,2 +m3 x2

k,2

.

As a result, the gradient algorithm with exact line search is given by

xk+1 = xk − α⋆∇f(xk),

as given in the question.

b) As indicated in the question, for the considered initial condition and value of m the value of α⋆ is
constant, namely

α⋆ =
x2
0,1 +m2x2

0,2

x2
0,1 +m3 x2

0,2

= 1/5.

As a result, the gradient iteration is given by

xk+1,1 =
4

5
xk,1, xk+1,2 = −4

5
xk,2.

This yields

xk,1 = x0,1

(
4

5

)k

= 9
(
4

5

)k

, xk,2 = x0,2

(
−4

5

)k

= (−1)k
(
4

5

)k

.

c) Note that x⋆ = 0, hence

‖xk+1‖2 =

(
9
(
4

5

)k+1
)2

+

(
(−1)k+1

(
4

5

)k+1
)2

= 82
(
4

5

)2(k+1)

,

‖xk‖2 = 82
(
4

5

)2k

,

thus
‖xk+1 − x⋆‖
‖xk − x⋆‖

=
4

5
.

The sequence thus converges with linear speed of convergence.
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Exercise 23 Consider the problem of computing the average of four numbers, a1, a2, a3 and a4. This
problem can be posed as an unconstrained optimization problem as follows

min
x
f(x),

with
f(x) = (x− a1)

2 + (x− a2)
2 + (x− a3)

2 + (x− a4)
2.

a) Compute the unique stationary point x⋆ of the function f and show that x⋆ is indeed the average
of a1, a2, a3 and a4.

b) Using second order sufficient conditions of optimality show that the stationary point determined
in part a) is a local minimizer. Hence, show that f is radially unbounded and that the stationary
point determined in part a) is the global minimizer of f .

c) Assume a1 = 1, a2 = 2, a3 = 3 and a4 = −6.

i) Write the gradient method for the minimization of the function f and determine the exact
line search parameter α⋆.

ii) Consider the gradient method with line search parameter α = γ α⋆, with γ ∈ [0, 3]. Determine
for which values of γ the iteration yields a converging sequence and, for these values of γ,
determine the speed of convergence of the sequence.

Solution 23 Note that

f(x) = (x− a1)
2 + (x− a2)

2 + (x− a3)
2 + (x− a4)

2

= x2 − 2a1 + a21 + x2 − 2a2 + a22 + x2 − 2a3 + a23 + x2 − 2a4 + a24

= 4x2 − 2(a1 + a2 + a3 + a4)x+ a21 + a22 + a23 + a24.

a) The first order necessary condition of optimality is

0 = ∇f = 8x− 2(a1 + a2 + a3 + a4),

which yields

x∗ =
a1 + a2 + a3 + a4

4
.

Clearly, x∗ is the average of a1, a2, a3, a4.

b) The second order sufficient condition of optimality is

∇2f = 8 > 0,

hence x∗ is a local minimizer. Note that f is strictly convex and this implies that x∗ is global
minimizer.

c) Note that f(x) = 4x2 + c2, with c2 = a21 + a22 + a23 + a24.

i) The gradient is
∇f = 8x

and the gradient algorithm gives

xk+1 = xk − 8αkxk = (1− 8αk)xk.

Note that
f(xk+1) = 4(1− 16αk + 64α2

k)x
2
k + c2

and
f(xk) = 4x2

k + c2

yields
f(xk+1)− f(xk) = 4(64α2

k − 16αk)x
2
k.
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To find the exact line search parameter solve

0 =
∂[f(xk+1)− f(xk)]

∂α
= 4(128αk − 16)x2

k,

obtaining

α∗ =
1

8
.

ii) Note now that
xk+1 = xk − 8γα∗xk = (1− γ)xk.

To have convergence we need
|1− γ| < 1.

Hence, γ ∈ (0, 2). For γ = 0 or γ = 2, |xk+1| = |xk|, and the sequence does not converge. For
γ ∈ (2, 3] |xk+1| > |xk|, hence the sequence diverges. For γ ∈ (0, 2) the speed of convergence
is linear, since

|xk+1 − x∗|
|xk − x∗| =

|xk+1|
|xk|

= |1− γ|.

Exercise 24 Consider the problem of minimizing the function

min
x
f(x),

with

f(x) =
1

2
x2
1 − x1x2 +

1

4
x4
2 −

1

3
x3
2.

a) Compute the stationary points of the function f .

b) Using second order sufficient conditions of optimality classify the stationary points determined in
part a). Hence, determine the global minimizer of f .

c) Consider the problem of minimizing the function using the so-called gradient method with extrap-
olation, that is the method defined by the iteration

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1),

with αk > 0 and βk ∈ [0, 1), for all k ≥ 0, and x−1 = x0. Let x0 = (1, 1).

i) Argue that the first step of the gradient method with extrapolation coincides with the first
step of the gradient method.

ii) Run one iteration of the gradient method with extrapolation and determine the point x1.
Note that x1 is a function of α0 hence write a condition on α0 such that the algorithm is
a descent algorithm, that is f(x1) < f(x0). Explain why β0 does not appear in the descent
condition f(x1) < f(x0).

iii) Pick αk = 1/2 for all k. Run one more iteration of the gradient method with extrapolation
(using as initial condition the point x1 determined in part c.ii), that is compute the point x2.
Determine a condition on β1 yielding a descent algorithm. Explain why β1 = 0 is a feasible
selection of β1 and argue that it is not the best selection.

Solution 24

a) The first order necessary condition of optimality is

0 = ∇f =

[
x1 − x2

−x1 + x3
2 − x2

2

]
,

which gives the equations
x1 = x2,
x2(x

2
2 − x2 − 1) = 0.

The stationary points are therefore P1 = (0, 0), P2 =
(

1+
√

5
2

, 1+
√
5

2

)
and P3 =

(
1−

√
5

2
, 1−

√
5

2

)
.
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b) The Hessian matrix of the function f is

∇2f(x) =

[
1 −1

−1 3x2
2 − 2x2

]
.

Evaluating the matrix at the stationary points yields

∇2f(P1) =

[
1 −1

−1 0

]
,

which is indefinite,

∇2f (P2) =

[
1 −1

−1 7+
√

5
2

]
,

which is positive definite, and

∇2f (P3) =

[
1 −1

−1 7−
√

5
2

]
,

which is also positive definite. Hence, P1 is a saddle point, whereas P2 and P3 are two local
minimizers. Computing the function at this points yields f (P2) = −1.0075 and f (P3) = −0.0758.
Since f is radially unbounded, i.e.

lim
|x|→+∞

f(x) = +∞,

the point P2 is the global minimizer of f .

c) i) In the first step of the gradient method with extrapolation the term multiplied by β0 is zero
(because of the way the algorithm is initialized), hence the iteration coincides with the gradient
iteration.

ii) Running one iteration of the algorithm from the indicated initial conditions yields the point

x1 =

[
1

1 + α0

]
.

Note that, consistently with the answer to c.i), the parameter β0 does not contribute to the
point x1. To check the descent condition note that

f(x1)− f(x0) =
1

12
α0(3α

3
0 + 8α2

0 + 6α0 − 12),

hence α0 should be selected such that

α0(3α
3
0 + 8α2

0 + 6α0 − 12) < 0

which is the case for α0 strictly positive and sufficiently small (approximately smaller than
0.82).

iii) Using αk = 1/2 and running one more iteration of the algorithm yields

x2 =

[
5/4

23/16 + 1/2β1

]
.

The descent condition is now

f(x2)− f(x1) = −0.0788 − 0.1729β1 + 0.415β2
1 + 0.138β3

1 + 0.015625β4
1 < 0,

which shows that β1 should be non-negative and smaller than approximately 0.6. The selection
β1 = 0 gives a descent condition because for such value of β1 one has essentially the gradient
iteration, for which the descent condition holds for the given selection of α1. However, β1 = 0
is not optimal since one could have a greater decrease selecting a strictly positive value of β1.
The optimal selection for this particular case is approximately β1 = 0.2.
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Exercise 25 The proximal method is a descent method in which the problem

min
x
f(x)

is replaced by the sequence of modified problems

min
x

(
f(x) +

1

2γk
‖x− xk‖2

)
,

where xk is the current estimate of the solution of the problem and xk+1 is the solution of the modified
minimization problem, and γk > 0.
Consider the quadratic function

f(x) =
1

2
x′Qx+ c′x+ d,

with Q = Q′ > 0. Recall that the function has a global minimizer at x⋆ = −Q−1c.

a) Write the optimization problem used in the proximal method and state under what conditions the
problem has a unique solution.

b) Solve explicitly the optimization problem arising from the proximal method, that is determine xk+1

as a function of xk. In particular, write the relation between xk+1 and xk in the form

xk+1 = Axk + b,

in which A is a matrix and b is a vector. (Note that A and b are functions of k.) Write explicitly
the matrix A and the vector b as a function of Q, c and γk.

c) Determine the fixed point x̄ of the equation xk+1 = Axk + b, that is the point x̄ such that

x̄ = Ax̄+ b,

and show that the point is the global minimizer of the quadratic function.

d) Show that the iteration arising from the proximal method is globally convergent for all γk > 0. This
can be achieved using the following steps.

i) Show that A = (γkQ+ I)−1 and that A′A < I .

ii) Write the iteration arising from the proximal method in the form xk+1 − x⋆ = A(xk − x⋆)+ b̃
and show that b̃ = 0.

iii) Exploit the results in parts d.i) and d.ii) to demonstrate the global convergence claim. Discuss
also the effect of the parameter γk on the speed of convergence of the algorithm.

Solution 25

a) The optimization problem used in the proximal method is

xk+1 = argminx

(
1
2
x′Qx+ c′x+ d+ 1

2γk
(x− xk)

′(x− xk)
)

= argminx
1
2
x′
(
Q+ 1

γk
I
)
x+

(
c′ − 1

γk
x′
k

)
x+ d+ 1

2γk
x′
kxk.

Note that the function to be minimized is again a quadratic function. Hence, it has a unique

minimizer if and only if the matrix

(
Q+

1

γk
I

)
is positive definite (which is always the case since

Q > 0 and γk > 0).

b) The solution of the optimization problem is

x∗ = xk+1 = −
(
Q+

1

γk
I

)−1(
c− 1

γk
xk

)
.
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This can be rewritten as

xk+1 =
1

γk

(
Q+

1

γk
I

)−1

xk −
(
Q+

1

γk
I

)−1

c.

Hence, A =
1

γk

(
Q+

1

γk
I

)−1

and b = −
(
Q+

1

γk
I

)−1

c.

c) The fixed point x̄ of the equation above is such that

x̄ =
1

γk

(
Q+

1

γk
I

)−1

x̄−
(
Q+

1

γk
I

)−1

c.

Multiplying on left by

(
Q+

1

γk
I

)
yields

(
Q+

1

γk
I

)
x̄ =

1

γk
x̄− c,

which gives
x̄ = −Q−1c,

i.e. the global minimizer of the quadratic function.

d) i) Trivially

A =
1

γk

(
Q+

1

γk
I

)−1

= (γk)
−1

(
Q+

1

γk
I

)−1

= (γkQ+ I)−1.

Observe now that A′A < I . Multiplying both sides with the matrix (A′A)−1 (which exists
because A′A is positive definite) yields

I < (γkQ+ I)(γkQ+ I)′,

hence
γ2
kQ

′Q+ γk(Q
′ +Q) > 0,

which holds by positivity of Q and γk.

ii) We add and subtract x∗ and Ax∗ to the equation in part b) obtaining

xk+1 − x∗ = A(xk − x∗) + b− x∗ +Ax∗.

Defining b̃ = b− x∗ +Ax∗, it remains to prove that b̃ = 0. Multiplying the expression of b̃ on

the left-hand side by
(
Q+ 1

γk
I
)

yields

(
Q+

1

γk
I

)
b̄ =

(
Q+

1

γk
I

)[
1

γk

(
Q+

1

γk
I

)−1

x∗ −
(
Q+

1

γk
I

)−1

c− x∗

]

= −c−
(
Q+

1

γk
I

)
x∗ +

1

γk
Ix∗ = −c−Qx∗.

The claim is proved substituting the minimizer x∗ = −Q−1c in the last equation.

iii) The equation
xk+1 − x∗ = A(xk − x∗)

is a linear difference equation in which all the eigenvalues of the dynamic matrix A have
modulus strictly smaller than one. Hence, the state xk −x∗ converges globally to zero, i.e. xk

converges to the optimal solution x∗. The greater the value of γk, the smaller the modulus of
the eigenvalues of A. Thus, increasing γk corresponds to a faster convergence of the algorithm.
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Exercise 26 The Levenberg-Marquardt algorithm is a modification of Newton’s method for the solution
of nonlinear equations. In the case of the scalar equation

f(x) = 0,

with x ∈ IR and f differentiable, the Levenberg-Marquardt algorithm can be written as (note that f ′

denotes the first derivative of f with respect to x)

xk+1 = xk − 2
f(xk)

f ′(xk) + f ′(x̄)
, x̄ = xk − f(xk)

f ′(xk)
.

Consider now the problem of minimizing the function

q(x) =
x4

4
+

4

3
x3 − 10x

(note that the global minimizer of the function q is x = 1.365230013).

a) Re-cast the considered minimization problem as the problem of finding the solution of a scalar
equation.

b) Write Newton’s iteration for the solution of the equation determined in part a).

c) Run four iterations of the Newton’s iteration in part b) with x0 = 3 and evaluate the first four
values of the sequence of the relative errors

REN
k+1 =

xk+1 − x⋆

(xk − x⋆)3
,

that is evaluate REN
1 , REN

2 , REN
3 and REN

4 . Hence argue that Newton’s method does not have
speed of convergence of order three. Explain why this is not un-expected.

d) Write now the Levenberg-Marquardt algorithm for the solution of the equation determined in part
a).
(Hint: write the algorithm as two equations, that is do not substitute x̄ into the first equation of
the algorithm.)

e) Run four iterations of the Levenberg-Marquardt algorithm in part d) with x0 = 3 and evaluate the
first four values of the sequence of the relative errors

RELM
k+1 =

xk+1 − x⋆

(xk − x⋆)3
.

Hence argue that the Levenberg-Marquardt algorithm is faster than Newton’s algorithm. (It is well-
known that the Levenberg-Marquardt algorithm has, under similar assumptions o those required
by Newton’s method, speed of convergence of order three.)

Solution 26

a) The minimization problem can be re-cast as the problem of finding the stationary points of the
function q, that is as the problem of solving the scalar equation

k(x) = x3 + 4x2 − 10 = 0.

As noted above, this equation has a solution at x = 1.365230013, which is actually the only solution.
Note also that the second derivative of f at x = 1.365230013 is positive, hence the point is a local
minimizer.

b) Newton’s iteration for the solution of the equation k(x) = 0 is

xk+1 = xk − x3
k + 4x2

k − 10

xk(3xk + 8)
=

2x3
k + 4x2

k + 10

xk(3xk + 8)
.
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c) Setting x0 = 3 yields

x1 = 1.960784314, RE1 = 0.1363174326,
x2 = 1.486238507, RE2 = 0.5728643018,
x3 = 1.371823522, RE3 = 3.721080242,
x4 = 1.365251224, RE4 = 73.99652652.

Since the sequence of the relative errors diverges the speed of convergence of the method is not of
order three (note the cube in the denominator of the definition of the relative error). This is not
un-expected, since under the given conditions one can only claim quadratic speed of convergence of
Newton’s method.

d) The Levenberg-Marquardt iteration is given by the two equations

xk+1 = xk − 2
x3
k + 4x2

k − 10

(xk(3xk + 8)) + (x̄(3x̄+ 8))
, x̄ = xk − x3

k + 4x2
k − 10

xk(3xk + 8)
.

e) Setting x0 = 3 yields

x1 = 1.644853060, RE1 = 0.06400339279,
x2 = 1.369582249, RE2 = 0.1990643754,
x3 = 1.365230035, RE3 = 0.2668611603,
x4 = 1.365230013, RE4 ≈ 0.

Since the sequence of the relative errors converges to zero, the speed of convergence of the Levenberg-
Marquardt iteration is at least of order three, definitely faster than Newton’s iteration.
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3.1 Introduction

In this chapter we discuss the basic tools for the solution of optimization problems of the
form

P0





min
x

f(x)

g(x) = 0

h(x) ≤ 0.

(3.1)

In the problem P0 there are both equality and inequality constraints1. However, sometimes
for simplicity, or because a method has been developed for problems with special structure,
we will refer to problems with only equality constraints, i.e. to problems of the form

P1

{
min
x

f(x)

g(x) = 0,
(3.2)

or to problems with only inequality constraints, i.e. to problems of the form

P2

{
min
x

f(x)

h(x) ≤ 0.
(3.3)

In all the above problems we have x ∈ IRn, f : IRn → IR, g : IRn → IRm, and h : IRn → IRp.
From a formal point of view it is always possible to transform the equality constraint
gi(x) = 0 into a pair of inequality constraints, i.e. gi(x) ≤ 0 and −gi(x) ≤ 0. Hence,
problem P1 can be (equivalently) described by

P̃1





min
x

f(x)

g(x) ≤ 0
−g(x) ≤ 0,

which is a special case of problem P2. In the same way, it is possible to transform the
inequality constraint hi(x) ≤ 0 into the equality constraint hi(x) + y2i = 0, where yi is
an auxiliary variable (also called slack variable). Therefore, defining the extended vector
z = [x′, y′]′, problem P2 can be rewritten as

P̃2

{
min
z

f(x)

h(x) + Y = 0,

with

Y =




y21
y22
...
y2p



,

which is a special case of problem P1.

1The condition h(x) ≤ 0 has to be understood element-wise, i.e. hi(x) ≤ 0 for all i.
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Note however, that the transformation of equality constraints into inequality constraints
yields an increase in the number of constraints, whereas the transformation of inequality
constraints into equality constraints results in an increased number of variables.
Given problem P0 (or P1, or P2), a point x satisfying the constraints is said to be an
admissible point, and the set of all admissible points is called the admissible set and it is
denoted with X . Note that the problem makes sense only if X 6= ∅.
In what follows it is assumed that the functions f , g and h are two times differentiable,
however we do not make any special hypothesis on the form of such functions. Note
however, that if g and h are linear there are special algorithms, and linear/quadratic
programming algorithms are used if f is linear/quadratic and g and h are linear. We do
not discuss these special algorithms, and concentrate mainly on algorithms suitable for
general problems.

3.2 Definitions and existence conditions

Consider the problem P0 (or P1, or P2). The following definitions are instrumental to
provide a necessary condition and a sufficient condition for the existence of local minima.

Definition 6 An open ball with center x⋆ and radius θ > 0 is the set

B(x⋆, θ) = {x ∈ IRn | ‖x− x⋆‖ < θ}.

Definition 7 A point x⋆ ∈ X is a constrained local minimizer if there exists θ > 0 such
that

f(y) ≥ f(x⋆), (3.4)

for all y ∈ X ∩B(x⋆, θ).
A point x⋆ ∈ X is a constrained global minimizer if

f(y) ≥ f(x⋆), (3.5)

for all y ∈ X .
If the inequality (3.4) (or (3.5)) holds with a strict inequality sign for all y 6= x⋆ then the
minimizer is said to be strict.

Definition 8 The i-th inequality constraints hi(x) is said to be active at x̃ if hi(x̃) = 0.
The set Ia(x̃) is the set of all indexes i such that hi(x̃) = 0, i.e.

Ia(x̃) = {i ∈ {1, 2, · · · , p} | hi(x̃) = 0}.

The vector ha(x̃) is the subvector of h(x) corresponding to the active constraints, i.e.

ha(x̃) = {hi(x̃) | i ∈ Ia(x̃).

Definition 9 A point x̃ is a regular point for the constraints if at x̃ the gradients of the
active constraints, i.e. the vectors ∇gi(x̃), for i = 1, · · · ,m and ∇hi(x̃), for i ∈ Ia(x̃), are
linearly independent.
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The definition of regular point is given because, the necessary and the sufficient conditions
for optimality, in the case of regular points are relatively simple. To state these conditions,
and with reference to problem P0, consider the Lagrangian function

L(x, λ, ρ) = f(x) + λ′g(x) + ρ′h(x) (3.6)

with λ ∈ IRm and ρ ∈ IRp. The vectors λ and ρ are called multipliers.
With the above ingredients and definitions it is now possible to provide a necessary con-
dition and a sufficient condition for local optimality.

Theorem 14 [First order necessary condition] Consider problem P0. Suppose x⋆ is a
local solution of the problem P0, and x⋆ is a regular point for the constraints.
Then there exist (unique) multipliers λ⋆ and ρ⋆ such that2

∇xL(x
⋆, λ⋆, ρ⋆) = 0

g(x⋆) = 0

h(x⋆) ≤ 0

ρ⋆ ≥ 0

(ρ⋆)′h(x⋆) = 0.

(3.7)

Conditions (3.7) are known as Kuhn-Tucker conditions.

Definition 10 Let x⋆ be a local solution of problem P0 and let ρ⋆ be the corresponding
(optimal) multiplier. At x⋆ the condition of strict complementarity holds if ρ⋆i > 0 for all
i ∈ Ia(x

⋆).

Theorem 15 [Second order sufficient condition] Consider the problem P0. Assume that
there exist x⋆, λ⋆ and ρ⋆ satisfying conditions (3.7). Suppose moreover that ρ⋆ is such
that the condition of strict complementarity holds at x⋆. Suppose finally that

s′∇2
xxL(x

⋆, λ⋆, ρ⋆)s > 0 (3.8)

for all s 6= 0 such that 


∂g(x⋆)

∂x
∂ha(x

⋆)

∂x


 s = 0.

Then x⋆ is a strict constrained local minimizer of problem P0.

Remark. Necessary and sufficient conditions for a global minimizer can be given under
proper convexity hypotheses, i.e. if the function f is convex in X , and if X is a convex
set. This is the case, for example if there are no inequality constraints and if the equality
constraints are linear. ⋄

2We denote with ∇xf the vector of the partial derivatives of f with respect to x.
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Remark. If all points in X are regular points for the constraints then conditions (3.7) yield
a set of points P, i.e. the points satisfying conditions (3.7), and among these points there
are all constrained local minima (and also the constrained global minimizer, if it exists).
However, if there are points in X which are not regular points for the constraints, then
the set P may not contain all constrained local minima. These have to be searched in the
set P and in the set of non-regular points. ⋄

Remark. In what follows, we will always tacitly assume that the conditions of regularity
and of strict complementarity hold. ⋄

3.2.1 A simple proof of Kuhn-Tucker conditions for equality constraints

Consider problem P1, i.e. a minimization problem with only equality constraints, and a
point x⋆ such that g(x⋆) = 0, i.e. x⋆ ∈ X . Suppose that3

rank
∂g

∂x
(x⋆) = m

i.e. x⋆ is a regular point for the constraints, and that x⋆ is a constrained local minimizer.
By the implicit function theorem, there exist a neighborhood of x⋆, a partition of the
vector x, i.e.

x =

[
u
v

]
,

with u ∈ IRm and v ∈ IRn−m, and a function φ such that the constrains g(x) = 0 can be
(locally) rewritten as

u = φ(v).

As a result (locally)

{
min
x

f(x)

g(x) = 0
⇔

{
min
u,v

f(u, v)

u = φ(v)
⇔ min

v
f(φ(v), v),

i.e. problem P1 is (locally) equivalent to a unconstrained minimization problem. Therefore

0 = ∇f(φ(v⋆), v⋆) =

(
∂f

∂u

∂φ

∂v
+

∂f

∂v

)

x⋆
=

(
−
∂f

∂u

(
∂g

∂u

)−1 ∂g

∂v
+

∂f

∂v

)

x⋆

.

Setting

λ⋆ =

(
−
∂f

∂u

(
∂g

∂u

)−1
)′

x⋆

yields (
∂f

∂v
+ (λ⋆)′

∂g

∂v

)

x⋆
= 0 (3.9)

3Note that m is the number of the equality constraints, and that, to avoid trivial cases, m < n.
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and (
∂f

∂u
+ (λ⋆)′

∂g

∂u

)

x⋆
= 0. (3.10)

Finally, let
L = f + λ′g,

note that equations (3.9) and (3.10) can be rewritten as

∇xL(x
⋆, λ⋆) = 0,

and this, together with g(x⋆) = 0, is equivalent to equations (3.7).

3.2.2 Quadratic cost function with linear equality constraints

Consider the function

f(x) =
1

2
x′Qx,

with x ∈ IRn and Q = Q′ > 0, the equality constraints

g(x) = Ax− b = 0,

with b ∈ IRm and m < n, and the Lagrangian function

L(x, λ) =
1

2
x′Qx+ λ′(Ax− b).

A simple application of Theorem 14 yields the necessary conditions of optimality

∇xL(x
⋆, λ⋆) = Qx⋆ +A′λ⋆ = 0

g(x⋆) = Ax⋆ − b = 0.
(3.11)

Suppose now that the matrix A is such that AQ−1A′ is invertible4. As a result, the only
solution of equations (3.11) is

x⋆ = Q−1A′(AQ−1A′)−1b λ⋆ = −(AQ−1A′)−1b.

Finally, by Theorem 15, it follows that x⋆ is a strict constrained (global) minimizer.

3.3 Nonlinear programming methods: introduction

The methods of non-linear programming that have been mostly studied in recent years
belong to two categories. The former includes all methods based on the transformation
of a constrained problem into one or more unconstrained problems, in particular the so-
called (exact or sequential) penalty function methods and (exact or sequential) augmented
Lagrangian methods. Sequential methods are based on the solution of a sequence of
problems, with the property that the sequence of the solutions of the subproblems converge

4This is the case if rankA = m.
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to the solution of the original problem. Exact methods are based on the fact that, under
suitable assumptions, the optimal solutions of an unconstrained problem coincides with
the optimal solution of the original problem.

The latter includes the methods based on the transformation of the original problem into
a sequence of constrained quadratic problems.

From the above discussion it is obvious that, to construct algorithms for the solution of
non-linear programming problems, it is necessary to use efficient unconstrained optimiza-
tion routines.

Finally, in any practical implementation, it is also important to quantify the complexity
of the algorithms in terms of number and type of operations (inversion of matrices, differ-
entiation, ...), and the speed of convergence. These issues are still largely open, and will
not be addressed in these notes.

3.4 Sequential and exact methods

3.4.1 Sequential penalty functions

In this section we study the so-called external sequential penalty functions. This name is
based on the fact that the solutions of the resulting unconstrained problems are in general
not admissible. There are also internal penalty functions (known as barrier functions) but
this can be used only for problems in which the admissible set has a non-empty interior.
As a result, such functions cannot be used in the presence of equality constraints.

The basic idea of external sequential penalty functions is very simple. Consider problem
P0, the function

q(x) =





0, if x ∈ X

+∞, if x 6∈ X
(3.12)

and the function

F = f + q. (3.13)

It is obvious that the unconstrained minimization of F yields a solution of problem P0.
However, because of its discontinuous nature, the minimization of F cannot be performed.
Nevertheless, it is possible to construct a sequence of continuously differentiable functions,
converging to F , and it is possible to study the convergence of the minima of such a
sequence of functions to the solutions of problem P0.

For, consider a continuously differentiable function p such that

p(x) =





0, if x ∈ X

> 0, if x 6∈ X ,
(3.14)

and the function

Fǫ = f +
1

ǫ
p,
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with ǫ > 0. It is obvious that5

lim
ǫ→0

Fǫ = F.

The function Fǫ is known as external penalty function. The attribute external is due to
the fact that, if x̄ is a minimizer of Fǫ in general p(x̄) 6= 0, i.e. x̄ 6∈ X . The term 1

ǫ p is called
penalty term, as it penalizes the violation of the constraints. In general, the function p
has the following form

p =
m∑

i=1

(gi)
2 +

p∑

i=1

(max(0, hi))
2. (3.15)

Consider now a strictly decreasing sequence {ǫk} such that limk→∞ ǫk = 0. The sequential
penalty function method consists in solving the sequence of unconstrained problems

min
x

Fǫk(x),

with x ∈ IRn. The most important convergence results for this methods are summarized
in the following statements.

Theorem 16 Consider the problem P0. Suppose that for all σ > 0 the set6

X σ = {x ∈ IRn | |gi(x)| ≤ σ, i = 1, · · · ,m} ∩ {x ∈ IRn | hi(x) ≤ σ, i = 1, · · · , p}

is compact. Suppose moreover that for all k the function Fǫk(x) has a global minimizer
xk.
Then the sequence {xk} has (at least) one converging subsequence, and the limit of any
converging subsequence is a global minimizer for problem P0.

Theorem 17 Let x⋆ be a strict constrained local minimizer for problem P0. Then there
exist a sequence {xk} and an integer k̄ > 0 such that {xk} converges to x⋆ and, for all
k ≥ k̄, xk is a local minimizer of Fǫk(x).

The construction of the function Fǫ is apparently very simple, and this is the main ad-
vantage of the method. However, the minimization of the function Fǫ may be difficult,
especially for small values of ǫ. In fact, it is possible to show, even via simple examples,
that as ǫ tends to zero the Hessian matrix of the function Fǫ becomes ill conditioned. As
a result, any unconstrained minimization algorithm used to minimize Fǫ has a very slow
convergence rate. To alleviate this problem, it is possible to use, in the minimization of
Fǫk+1

, as initial point the point xk. However, this is close to the minimizer of Fǫk+1
only

if ǫk+1 is close to ǫk, i.e. only if the sequence {ǫk} converges slowly to zero.
We conclude that, to avoid the ill conditioning of the Hessian matrix of Fǫ, hence the slow
convergence of each unconstrained optimization problem, it is necessary to slow down the
convergence of the sequence {xk}, i.e. slow convergence is an intrinsic property of the
method. This fact has motivated the search for alternatives methods, as described in the
next sections.

5Because of the discontinuity of F , the limit has to be considered with proper care.
6The set X σ is sometimes called the relaxed admissible set.
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Remark. It is possible to show that the local minima of Fǫ describe (continuous) trajectories
that can be extrapolated. This observation is exploited in some sophisticated methods for
the selection of initial estimate for the point xk. However, even with the addition of this
extrapolation procedure, the convergence of the method remains slow. ⋄

Remark. Note that, if the function p is defined as in equation (3.15), then the function
Fǫ is not two times differentiable everywhere, i.e. it is not differentiable in all points in
which an inequality constraints is active. This property restricts the class of minimization
algorithms that can be used to minimize Fǫ. ⋄

3.4.2 Sequential augmented Lagrangian functions

Consider problem P1, i.e. an optimization problem with only equality constraints. For
such a problem the Lagrangian function is

L = f + λ′g,

and the first order necessary conditions require the existence of a multiplier λ⋆ such that,
for any local solution x⋆ of problem P1 one has

∇xL(x
⋆, λ⋆) = 0

∇λL(x
⋆, λ⋆) = g(x⋆) = 0.

(3.16)

The first of equations (3.16) is suggestive of the fact that the function L(x, λ⋆) has a
unconstrained minimizer in x⋆. This is actually not the case, as L(x, λ⋆) is not convex in a
neighborhood of x⋆. However it is possible to render the function L(x, λ⋆) convex with the
addition of a penalty term, yielding the new function, known as augmented Lagrangian
function7,

La(x, λ
⋆) = L(x, λ⋆) +

1

ǫ
‖g(x)‖2, (3.17)

which, for ǫ sufficiently small, but such that 1/ǫ is finite, has a unconstrained minimizer
in x⋆. This intuitive discussion can be given a formal justification, as shown in the next
statement.

Theorem 18 Suppose that at x⋆ and λ⋆ the sufficient conditions for a strict constrained
local minimizer for problem P1 hold. Then there exists ǭ > 0 such that for any ǫ ∈ (0, ǭ)
the point x⋆ is a unconstrained local minimizer for the function La(x, λ

⋆).
Vice-versa, if for some ǭ and λ⋆, at x⋆ the sufficient conditions for a unconstrained local
minimizer for the function La(x, λ

⋆) hold, and g(x⋆) = 0, then x⋆ is a strict constrained
local minimizer for problem P1.

The above theorem highlights the fact that, under the stated assumptions, the function
La(x, λ

⋆) is an (external) penalty function, with the property that, to give local minima

7To be precise we should write La(x, λ
⋆, ǫ), however we omit the argument ǫ.
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for problem P1 it is not necessary that ǫ → 0. Unfortunately, this result is not of practical
interest, because it requires the knowledge of λ⋆. To obtain a useful algorithm, it is possible
to make use of the following considerations.

By the implicit function theorem, applied to the first of equation (3.16), we infer that
there exist a neighborhood of λ⋆, a neighborhood of x⋆, and a continuously differentiable
function x(λ) such that (locally)

∇xLa(x(λ), λ) = 0.

Moreover, for any ǫ ∈ (0, ǭ), as ∇2
xxLa(x

⋆, λ⋆) is positive definite also ∇2
xxLa(x, λ) is locally

positive definite. As a result, x(λ) is the only value of x that, for any fixed λ, minimizes
the function La(x, λ). It is therefore reasonable to assume that if λk is a good estimate of
λ⋆, then the minimization of La(x, λk) for a sufficiently small value of ǫ, yields a point xk
which is a good approximation of x⋆.
On the basis of the above discussion it is possible to construct the following minimization
algorithm for problem P1.

Step 0. Given x0 ∈ IRn, λ1 ∈ IRm and ǫ1 > 0.

Step 1. Set k = 1.

Step 2. Find a local minimizer xk of La(x, λk) using any unconstrained minimization
algorithm, with starting point xk−1.

Step 3. Compute a new estimate λk+1 of λ⋆.

Step 4. Set ǫk+1 = βǫk, with β = 1 if ‖g(xk+1)‖ ≤ 1
4‖g(xk)‖ or β < 1 otherwise.

Step 5. Set k = k + 1 and go to Step 2.

In Step 3 it is necessary to construct a new estimate λk+1 of λk. This can be done with
proper considerations on the function La(x(λ), λ), introduced in the above discussion.
However, without providing the formal details, we mention that one of the most used
update laws for λ are described by the equations

λk+1 = λk +
2

ǫk
g(xk), (3.18)

or

λk+1 = λk −
[
∇2La(x(λk), λk)

]−1
g(xk), (3.19)

whenever the indicated inverse exists.
Note that the convergence of the sequence {xk} to x⋆ is limited by the convergence of the
sequence {λk} to λ⋆. It is possible to prove that, if the update law (3.18) is used then the
algorithm as linear convergence, whereas if (3.19) is used the convergence is superlinear.

Remark. Similar considerations can be done for problem P2. For, recall that problem P2 can
be recast, increasing the number of variables, as an optimization problem with equality
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constraints, i.e. problem P̃2. For such an extended problem, consider the augmented
Lagrangian

La(x, y, ρ) = f(x) +
p∑

i=1

ρi
(
hi(x) + y2i

)
+

1

ǫ

p∑

i=1

(
hi(x) + y2i

)2
,

and note that, in principle, it would be possible to make use of the results developed
with reference to problem P1. However, the function La can be analytically minimized
with respect to the variables yi. In fact, a simple computation shows that the (global)
minimizer of La as a function of y is attained at

yi(x, ρ) =

√
−min

(
0, hi(x) +

ǫ

2
ρi

)
.

As a result, the augmented Lagrangian function for problem P2 is given by

La(x, ρ) = f(x) + ρ′h(x) +
1

ǫ
‖h(x)‖2 −

1

ǫ

p∑

i=1

(
min(0, hi(x) +

ǫ

2
ρi)

)2

.

⋄

3.4.3 Exact penalty functions

An exact penalty function, for a given constrained optimization problem, is a function of
the same variables of the problem with the property that its unconstrained minimization
yields a solution of the original problem. The term exact as opposed to sequential indicates
that only one, instead of several, minimization is required.
Consider problem P1, let x⋆ be a local solution and let λ⋆ be the corresponding multi-
plier. The basic idea of exact penalty functions methods is to determine the multiplier λ
appearing in the augmented Lagrangian function as a function of x, i.e. λ = λ(x), with
λ(x⋆) = λ⋆. With the use of this function one has8

La(x, λ(x)) = f(x) + λ(x)′g(x) +
1

ǫ
‖g(x)‖2.

The function λ(x) is obtained considering the necessary condition of optimality

∇xLa(x
⋆, λ⋆) = ∇f(x⋆) +

∂g(x⋆)′

∂x
λ⋆ = 0 (3.20)

and noting that, if x⋆ is a regular point for the constraints then equation (3.20) can be
solved for λ⋆ yielding

λ⋆ = −

(
∂g(x⋆)

∂x

∂g(x⋆)′

∂x

)−1 ∂g(x⋆)

∂x
∇f(x⋆).

8As in previous sections we omit the argument ǫ.
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This equality suggests to define the function λ(x) as

λ(x) = −

(
∂g(x)

∂x

∂g(x)′

∂x

)−1 ∂g(x)

∂x
∇f(x),

and this is defined at all x where the indicated inverse exists, in particular at x⋆.
It is possible to show that this selection of λ(x) yields and exact penalty function for
problem P1. For, consider the function

G(x) = f(x)− g(x)′
(
∂g(x)

∂x

∂g(x)′

∂x

)−1 ∂g(x)

∂x
∇f(x) +

1

ǫ
‖g(x)‖2,

which is defined and differentiable in the set

X̃ = {x ∈ IRn ‖ rank
∂g(x)

∂x
= m}, (3.21)

and the following statements.

Theorem 19 Let X̄ be a compact subset of X̃ . Assume that x⋆ is the only global minimizer
of f in X ∩ X̄ and that x⋆ is in the interior of X̄ . Then there exists ǭ > 0 such that, for
any ǫ ∈ (0, ǭ), x⋆ is the only global minimizer of G in X̄ .

Theorem 20 Let X̄ be a compact subset of X̃ . Then there exists ǭ > 0 such that, for any
ǫ ∈ (0, ǭ), if x⋆ is a unconstrained minimizer of G(x) and x⋆ ∈ X̄ , then x⋆ is a constrained
local minimizer for problem P1.

Theorems 19 and 20 show that it is legitimate to search solutions of problem P1 minimizing
the function G for sufficiently small values of ǫ. Note that it is possible to prove stronger
results, showing that there is (under certain hypotheses) a one to one correspondence
between the minima of problem P1 and the minima of the function G, provided ǫ is
sufficiently small.
For problem P2 it is possible to proceed as discussed in Section 3.4.2, i.e. transforming
problem P2 into problem P̃2 and then minimizing analytically with respect to the new
variables yi. However, a different and more direct route can be taken. Consider problem
P2 and the necessary conditions

∇xL(x
⋆, ρ⋆) = ∇f(x⋆) +

∂h(x⋆)′

∂x
ρ⋆ = 0 (3.22)

and

ρ⋆i hi(x
⋆) = 0, (3.23)

for i = 1, · · · , p. Premultiplying equation (3.22) by ∂h(x⋆)
∂x and equation (3.23) by γ2hi(x

⋆),
with γ > 0, and adding, yields

(
∂h(x⋆)

∂x

∂h(x⋆)′

∂x
+ γ2H2(x⋆)

)
ρ⋆ +

∂h(x⋆)

∂x
∇f(x⋆) = 0,
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where

H(x⋆) = diag(h1(x
⋆), · · · , hp(x

⋆)).

As a result, a natural candidate for the function ρ(x) is

ρ(x) = −

(
∂h(x)

∂x

∂h(x)′

∂x
+ γ2H2(x)

)−1 ∂h(x)

∂x
∇f(x),

which is defined whenever the indicated inverse exists, in particular in the neighborhood
of any regular point. With the use of this function, it is possible to define an exact penalty
function for problem P2 and to establish results similar to those illustrated in Theorems
19 and 20.

The exact penalty functions considered in this section provide, in principle, a theoretically
sound way of solving constrained optimization problem. However, in practice, they have
two major drawbacks. Firstly, at each step, it is necessary to invert a matrix with dimen-
sion equal to the number of constraint. This operation is numerically ill conditioned if
the number of constraints is large. Secondly, the exact penalty functions may not be suf-
ficiently regular to allow the use of unconstrained minimization methods with fast speed
of convergence, e.g. Newton method.

3.4.4 Exact augmented Lagrangian functions

An exact augmented Lagrangian function, for a given constrained optimization problem, is
a function, defined on an augmented space with dimension equal to the number of variables
plus the number of constraint, with the property that its unconstrained minimization yields
a solution of the original problem. Moreover, in the computation of such a function it is
not necessary to invert any matrix.

To begin with, consider problem P1 and recall that, for such a problem, a sequential
augmented Lagrangian function has been defined adding to the Lagrangian function a
term, namely 1

ǫ ‖g(x)‖
2, which penalizes the violation of the necessary condition g(x) = 0.

This term, for ǫ sufficiently small, renders the function La convex in a neighborhood of
x⋆. A complete convexification can be achieved adding a further term that penalizes the
violation of the necessary condition ∇xL(x, λ) = 0. More precisely, consider the function

S(x, λ) = f(x) + λ′g(x) +
1

ǫ
‖g(x)‖2 + η‖

∂g(x)

∂x
∇xL(x, λ)‖

2, (3.24)

with ǫ > 0 and η > 0. The function (3.24) is continuously differentiable and it is such that,
for ǫ sufficiently small, the solutions of problem P1 are in a one to one correspondence
with the points (x, λ) which are local minima of S, as detailed in the following statements.

Theorem 21 Let X̄ be a compact set. Suppose x⋆ is the unique global minimizer of f
in the set X ∩ X̄ and x⋆ is an interior point of X̄ . Let λ⋆ be the multiplier associated to
x⋆. Then, for any compact set Λ ⊂ IRm such that λ⋆ ∈ Λ there exists ǭ such that, for all
ǫ ∈ (0, ǭ), (x⋆, λ⋆) is the unique global minimizer of S in X × Γ.
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Theorem 22 Let9 X × Λ ⊂ X̃ × IRm be a compact set. Then there exists ǭ > 0 such
that, for all ǫ ∈ (0, ǭ), if (x⋆, λ⋆) is a unconstrained local minimizer of S, then x⋆ is a
constrained local minimizer for problem P1 and λ⋆ is the corresponding multiplier.

Theorems 21 and 22 justify the use of a unconstrained minimization algorithm, applied to
the function S, to find local (or global) solutions of problem P1.
Problem P2 can be dealt with using the same considerations done in Section 3.4.2.

3.5 Recursive quadratic programming

Recursive quadratic programming methods have been widely studied in the past years. In
this section we provide a preliminary description of such methods. For, consider problem
P1 and suppose that x⋆ and λ⋆ are such that the necessary conditions (3.7) hold. Consider
now a series expansion of the function L(x, λ⋆) in a neighborhood of x⋆, i.e.

L(x, λ⋆) = f(x⋆) +
1

2
(x− x⋆)′∇2

xxL(x
⋆, λ⋆)(x− x⋆) + ....

a series expansion of the constraint, i.e.

0 = g(x) = g(x⋆) +
∂g(x⋆)

∂x
(x− x⋆) + ...

and the problem

P̃Q1





min
x

f(x⋆) +
1

2
(x− x⋆)′∇2

xxL(x
⋆, λ⋆)(x− x⋆)

∂g(x⋆)

∂x
(x− x⋆) = 0.

Note that problem P̃Q1 has the solution x⋆, and the corresponding multiplier is λ = 0,
which is not equal (in general) to λ⋆. This phenomenon is called bias of the multiplier,
and can be avoided by modifying the objective function and considering the new problem

PQ1





min
x

f(x⋆) +∇f(x⋆)′(x− x⋆) +
1

2
(x− x⋆)′∇2

xxL(x
⋆, λ⋆)(x− x⋆)

∂g(x⋆)

∂x
(x− x⋆) = 0,

(3.25)

which has solution x⋆ with multiplier λ⋆. This observation suggests to consider the se-
quence of quadratic programming problems

PQk+1
1





min
δ

f(xk) +∇f(xk)
′δ +

1

2
δ′∇2

xxL(xk, λk)δ

g(xk) +
∂g(xk)

∂x
δ = 0,

(3.26)

9The set X̃ is defined as in equation (3.21).
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where δ = x − xk, and xk and λk are the current estimates of the solution and of the
multiplier. The solution of problem PQk+1

1 yields new estimates xk+1 and λk+1. To assess
the local convergence of the method, note that the necessary conditions for problem PQk+1

1

yields the system of equations




∇2
xxL(xk, λk)

∂g(xk)
′

∂x
∂g(xk)

∂x
0



[

δ
λ

]
= −

[
∇f(xk)
g(xk)

]
, (3.27)

and this system coincides with the system arising from the application of Newton method
to the solution of the necessary conditions for problem P1. As a consequence, the solutions
of the problems PQk+1

1 converge to a solution of problem P1 under the same hypotheses
that guarantee the convergence of Newton method.

Theorem 23 Let x⋆ be a strict constrained local minimizer for problem P1, and let λ⋆

be the corresponding multiplier. Suppose that for x⋆ and λ⋆ the sufficient conditions of
Theorem 15 hold. Then there exists an open neighborhood Ω ⊂ IRn × IRm of the point
(x⋆, λ⋆) such that, if (x0, λ0) ∈ Ω, the sequence {xk, λk} obtained solving the sequence of
quadratic programming problems PQk+1

1 , with k = 0, 1, · · ·, converges to (x⋆, λ⋆).

Moreover, the speed of convergence is superlinear, and, if f and g are three times differ-
entiable, the speed of convergence is quadratic.

Remark. It is convenient to solve the sequence of quadratic programming problems PQk+1
1 ,

instead of solving the equations (3.27) with Newton method, because, for the former it is
possible to exclude converge to maxima or saddle points. ⋄

In the case of problem P2, using considerations similar to the one above, it is easy to
obtain the following sequence of quadratic programming problems

PQk+1
2





min
δ

f(xk) +∇f(xk)
′δ +

1

2
δ′∇2

xxL(xk, λk)δ

∂h(xk)

∂x
δ + h(xk) ≤ 0.

(3.28)

This sequence of problems has to be solved iteratively to generate a sequence {xk, λk}
that, under hypotheses similar to those of Theorem 23, converges to a strict constrained
local minimizer of problem P2.

The method described are the basis for a large class of iterative methods.

A first disadvantage of the proposed iterative schemes is that it is necessary to compute
the second derivatives of the functions of the problem. This computation can be avoided,
using the same philosophy of quasi-Newton methods.

A second disadvantage is in the fact that, being based on Newton algorithm, only local
convergence can be guaranteed. However, it is possible to combine the method with global
convergent methods: these are used to generate a pair (x̃, λ̃) sufficiently close to (x⋆, λ⋆)
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and then recursive quadratic programming methods are used to obtain fast convergence
to (x⋆, λ⋆).

A third disadvantage is in the fact that there is no guarantee that the sequence of admis-
sible sets generated by the algorithm is non-empty at each step.

Finally, it is worth noting that, contrary to most of the existing methods, quadratic
programming methods do not rely on the use of a penalty term.

Remark. There are several alternative recursive quadratic programming methods which
alleviate the drawbacks of the methods described. These are (in general) based on the
use of quadratic approximation of penalty functions. For brevity, we do not discuss these
methods. ⋄

3.6 Concluding remarks

In this section we briefly summarize advantages and disadvantages of the nonlinear pro-
gramming methods discussed.

Sequential penalty functions methods are very simple to implement, but suffer from the
ill conditioning associated to large penalties (i.e. to small values of ǫ). As a result, these
methods can be used if approximate solutions are acceptable, or in the determination of
initial estimates for more precise, but only locally convergent, methods. Note, in fact, that
not only an approximation of the solution x⋆ can be obtained, but also an approximation
of the corresponding multiplier λ⋆. For example, for problem P1, a (approximate) solution
x̄ is such that

∇Fǫk(x̄) = ∇f(x̄) +
2

ǫk

∂g(x̄)

∂x
g(x̄) = 0,

hence, the term 2
ǫk
g(x̄) provides an approximation of λ⋆.

Sequential augmented Lagrangian functions do not suffer from ill conditioning, and yield
faster speed of convergence then that attainable using sequential penalty functions.

The methods based on exact penalty functions do not require the solution of a sequence
of problems. However, they require the inversion of a matrix of dimension equal to the
number of constraints, hence their applicability is limited to problems with a small number
of constraints.

Exact augmented Lagrangian functions can be built without inverting any matrix. How-
ever, the minimization has to be performed in an extended space.

Recursive quadratic programming methods require the solution, at each step, of a con-
strained quadratic programming problem. Their main problem is that there is no guaran-
tee that the admissible set is non-empty at each step.

We conclude that it is not possible to decide which is the best method. Each method has its
own advantages and disadvantages. Therefore, the selection of a nonlinear programming
method has to be driven by the nature of the problem: and has to take into consideration
the number of variables, the regularity of the involved functions, the required precision,
the computational cost, ....
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3.7 Exercises

Similarly to Section 2.10, this section contains a set of exercises related to the notions,
concepts, algorithms and tools discussed in Chapter 3. Since nonlinear programming
is a widely studied, and complex, area of optimization, there are several methods and
algorithms which are introduced only via exercises and which are not covered in details
in the text. It is my hope that the exercises could form the starting point for additional
reading.

Exercise 27 Consider the minimization problem




min
x1,x2

1− x2
1 − x2

2,

x1 ≥ 0,

x2 ≥ 0,

x1 + x2 − 1 ≤ 0.

a) Show that all points in the admissible set are regular points for the constraints.

b) State the first order necessary conditions of optimality for such a constrained optimization problem.

c) Using the conditions derived in part b), compute candidate optimal solutions.

d) Show that the admissible set is compact. Hence deduce the existence of a global minimizer for the
optimization problem. Determine the global minimizer of the problem. Is this minimizer unique?

Solution 27

a) The admissible set is the shaded area in the figure below. The arrows denote the gradient of
the constraints on the boundary of the admissible set. As can be seen, these vectors are always
independent, therefore all points are regular points for the constraints.

b) Define the Lagrangian

L = 1− x2
1 − x2

2 + ρ1(−x1) + ρ2(−x2) + ρ3(x1 + x2 − 1).

The first order necessary conditions of optimality are

−2x1 − ρ1 + ρ3 = 0, −2x2 − ρ2 + ρ3 = 0,

−x1 ≤ 0, −x2 ≤ 0, x1 + x2 − 1 ≤ 0,

ρ1 ≥ 0, ρ2 ≥ 0, ρ3 ≥ 0,

−ρ1x1 = 0, −ρ2x2 = 0, ρ3(x1 + x2 − 1) = 0.

c) To compute candidate optimal solutions, note that from the last line of the necessary conditions we
have the following possibilities:

P1: ρ1 = 0, ρ2 = 0, ρ3 = 0; P2: ρ1 = 0, ρ2 = 0, ρ3 > 0;
P3: ρ1 = 0, ρ2 > 0, ρ3 = 0; P4: ρ1 = 0, ρ2 > 0, ρ3 > 0;
P5: ρ1 > 0, ρ2 = 0, ρ3 = 0; P6: ρ1 > 0, ρ2 = 0, ρ3 > 0;
P7: ρ1 > 0, ρ2 > 0, ρ3 = 0; P8: ρ1 > 0, ρ2 > 0, ρ3 > 0.

This yields the following candidate points

P1: x1 = x2 = 0 hence f = 1; P2: x1 = x2 = 1/2 hence f = 1/2;
P3: unfeasible; P4: x1 = 1, x2 = 0, hence f = 0;
P5: unfeasible; P6: x1 = 0, x2 = 1, hence f = 0;
P7: unfeasible; P8: unfeasible.



106 CHAPTER 3. NONLINEAR PROGRAMMING

As a result, we have only four candidate points:

P1 = (0, 0), P2 = (1/2, 1/2), P4 = (1, 0), P6 = (0, 1).

d) The admissible set is closed (the constraints include the equality sign) and bounded (see the figure),
hence compact. By Weierstrass theorem the function f has a global minimum in such a set. The
function f attains its global minimum at P4 and P6, which are therefore both global minimizers.
(This can be also shown noting that the problem is symmetric, i.e. changing x1 into x2 and x2 into
x1 yields the same problem.)

Exercise 28 Consider the optimization problem





min
x1,x2

−x1 − x2

x2
1 + x2

2 − 1 = 0

a) Transform this minimization problem into an unconstrained minimization problem using the method
of sequential penalty functions.

b) State the necessary conditions of optimality for the unconstrained problem of part a). Hence com-
pute approximate candidate optimal solutions for the unconstrained optimization problem. Discuss
the feasibility of these candidate optimal solutions.
(Hint: you may show that optimal points of the unconstrained problem are such that x⋆

1 = x⋆
2.

Moreover, use the fact that the solutions of 1+4x
1− 2x2

ǫ
= 0, for ǫ positive and small, are

√
2

2
+ 1

8
ǫ,

−
√

2
2

+ 1
8
ǫ, − 1

4
ǫ.)

c) Consider the stationary points of the sequential penalty function in part b). Consider the limit for
ǫ → 0 of these stationary points and thus determine candidate optimal solutions for the original
constrained optimization problem.

Solution 28

a) A sequential penalty function for the constrained problem is

Fǫ = −x1 − x2 +
1

ǫ
(x2

1 + x2
2 − 1)2.
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b) The necessary conditions of optimality for Fǫ are

0 = ∇Fǫ =




−1 + 4x1

ǫ
(x2

1 + x2
2 − 1)

−1 + 4x2

ǫ
(x2

1 + x2
2 − 1)


 .

As a result,
1

x1
=

4

ǫ
(x2

1 + x2
2 − 1)

1

x2
=

4

ǫ
(x2

1 + x2
2 − 1)

yielding x1 = x2. Let x1 = x2 = x. From the first equation we have

1

x
=

4

ǫ
(2x2 − 1) ⇒ 1 + 4x

1− 2x2

ǫ
= 0.

As stated, this equation has approximate solutions

√
2

2
+

1

8
ǫ, −

√
2

2
+

1

8
ǫ, −1

4
ǫ.

As a result, Fǫ has three stationary points:

P1 ≈
(√

2

2
+

1

8
ǫ,

√
2

2
+

1

8
ǫ

)
, P2 ≈

(
−
√
2

2
+

1

8
ǫ,

−
√
2

2
+

1

8
ǫ

)
, P3 ≈

(
−1

4
ǫ,−1

4
ǫ
)
.

Note that none of the above points is feasible, for any ǫ > 0 and sufficiently small.

c) The stationary points of Fǫ are such that

lim
ǫ→0

P1 =

(√
2

2
,

√
2

2

)
, lim

ǫ→0
P2 =

(
−
√
2

2
,−

√
2

2

)
, lim

ǫ→0
P3 = (0, 0).

Hence, P1 and P2 converge to the admissible set, and P1 is a (local) solution of the optimization
problem considered.

Exercise 29 Consider the optimization problem




min
x1,x2

x2
1 − x2

2,

x1 − x2
2 = 0.

a) Sketch in the (x1, x2)-plane the level lines of the function to be minimized and the admissible set.
(Hint: plot the level lines corresponding to x2

1 − x2
2 = 0 and x2

1 − x2
2 = ±4.)

b) Using first order necessary conditions, compute candidate optimal solutions. Use second order
sufficient conditions to decide which of the candidate points is a local minimizer or a local maximizer.

c) Compute an exact penalty function for the minimization problem and verify that the candidate
optimal solutions determined in part b) are stationary points of the exact penalty function.

Solution 29

a) The level sets and the admissible set are depicted in the figure below.

b) Let
L(x, λ) = x2

1 − x2
2 + λ(x1 − x2

2).

The first order necessary conditions are

2x1 + λ = 0, −2x2 − 2λx2 = 0, x1 − x2
2 = 0,
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and these yield the candidate optimal points

P1 = (0, 0), P2 = (1/2,
√
2/2), P3 = (1/2,−

√
2/2),

with corresponding multipliers λ1 = 0, λ2 = −1, λ3 = −1. The second order sufficient conditions are
s′∇2

xxL(x
⋆, λ⋆)s > 0 for s 6= 0 such that [1,−2x⋆

2]s = 0. For P1 one has s = [0, 1]′ and s′(∇2
xxL)s < 0,

hence P1 is a local maximizer. For P2 one has s = [
√
2, 1]′ and s′(∇2

xxL)s = 4, and for P3 one has
s = [

√
2,−1]′ and s′(∇2

xx)Ls = 4. Hence, P2 and P3 are local minimizers.

c) An exact penalty function for the considered problem is

G(x1, x2) = x2
1 − x2

2 −
(2x1 + 4x2

2)(x1 − x2
2)

1 + 4x2
2

+
(x1 − x2

2)
2

ǫ
,

with ǫ > 0. Its stationary points are the solutions of

0 = ∇G(x1, x2) =




2
−x1ǫ+ 4x1ǫx

2
2 − ǫx2

2 + x1 + 4x1x
2
2 − x2

2 − 4x4
2

(1 + 4x2
2)ǫ

2x2
−ǫ+ 8ǫx2

1 − 2x1ǫ− 2x1 − 16x1x
2
2 − 32x1x

4
2 + 2x2

2 + 16x4
2 + 32x6

2

(1 + 4x2
2)

2ǫ


 .

By direct substitution we verify that, for any ǫ > 0, the points P1, P2 and P3 are stationary points
of G.
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Exercise 30 Consider the minimization problem





min
x1,x2

−x1x2,

0 ≤ x1 + x2 ≤ 2,

−2 ≤ x1 − x2 ≤ 2,

a) Sketch in the (x1, x2)-plane the level surfaces of the function to be minimized and the admissible
set. Hence show that all points in the admissible set are regular points for the constraints.

b) Using only graphical considerations determine the global solution of the considered problem.
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c) State first order necessary conditions of optimality for such a constrained optimization problem.
Show that the point determined in part b) satisfies first order necessary conditions of optimality,
for some selection of the multiplier ρ.

d) Show that the point determined in part b) satisfies second order sufficient conditions of optimality
for such a constrained optimization problem.

Solution 30

a) The admissible set is the shaded area in the figure below. The arrows denote the gradient of
the constraints on the boundary of the admissible set. As can be seen, these vectors are always
independent, therefore all points are regular points for the constraints. The dashed lines represent
level lines of the function f .

b) From the figure it can be seen that the minimum is achieved when the level line of the function f
is tangent to the admissible set, i.e. at the point p = (1, 1).

c) Consider the Lagrangian

L = −x1x2 + ρ1(−x1 − x2) + ρ2(x1 + x2 − 2) + ρ3(−2− x1 + x2) + ρ4(x1 − x2 − 2).

The first order sufficient conditions of optimality are

0 = ∇xL =

[
−x2 − ρ1 + ρ2 − ρ3 + ρ4
−x1 − ρ1 + ρ2 + ρ3 − ρ4

]

−x1 − x2 ≤ 0, x1 + x2 − 2 ≤ 0, −x1 − x2 − 2 ≤ 0, x1 − x2 − 2 ≤ 0,

ρ1 ≥ 0, ρ2 ≥ 0, ρ3 ≥ 0, ρ4 ≥ 0,

ρ1(−x1−x2) = 0, ρ2(x1+x2−2) = 0, ρ3(−2−x1+x2) = 0, ρ4(x1−x2−2) = 0.

Setting (x1, x2) = (1, 1) and selecting ρ1 = 0, ρ3 = 0, ρ4 = 0 satisfies all the above equations.
Hence, the point (x1, x2) = (1, 1), together with the given multipliers, satisfies first order necessary
conditions of optimality.

d) To check second order sufficient conditions note that for (x1, x2) = (1, 1) the only active constraint
is x1 + x2 − 2 ≤ 0. Therefore we need to check positivity of s′∇2

xxLs for s = [s1 s2]
′ such that

[1 1]s = 0. This means s1 + s2 = 0, hence, solving for s2, one has

s′∇2
xxLs =

[
s1 −s1

] [ 0 −1
−1 0

] [
s1
−s1

]
= 2s21 > 0

for s1 6= 0. As a result, the point obtained from graphical considerations in part b) is indeed a local
minimizer for the considered problem.
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Exercise 31 Consider the optimization problem




min
x1,x2,x3

Tx2
1 + Tx2

2 + x2
3,

x1 + x2 + x3 − 1 = 0.

a) Transform this minimization problem into an unconstrained minimization problem by solving the
constraint equation for x3 and substituting the solution into the objective function.

b) Assume T > 0. Consider the unconstrained minimization problem determined in part a). Find (the
unique) candidate optimal solution and show that this is indeed a local minimizer.

c) Assume T > 0. Exploit the results in parts a) and b) to determine the solution of the constrained
optimization problem.

d) Assume T > 0. Consider the so-called l1 penalty function

fp = Tx2
1 + Tx2

2 + x2
3 +

|x1 + x2 + x3 − 1|
ǫ

,

with ǫ > 0 and sufficiently small. Show that the unique stationary point of fp coincides with the
optimal solution determined in part c).

(Hint: recall that that d|x|
dx

= sign(x) and that sign(0) ∈ [−1, 1]. Moreover, use the fact that the
stationary points of fp do not depend upon the parameter ǫ.)

Solution 31

a) Solving the constrain equation for x3 yields x3 = 1 − x1 − x2. This is replaced in the function to
minimize, hence resulting in the unconstrained minimization problem

min
x1,x2

f̃

with
f̃ = Tx2

1 + Tx2
2 + (1− x1 − x2)

2.

b) To determine candidate optimal solution consider the equations

0 = ∇f̃ =

[
2Tx1 + 2x1 + 2x2 − 2

2Tx2 + 2x1 + 2x2 − 2.

]

These have the unique solution

x⋆
1 =

1

T + 2
, x⋆

2 =
1

T + 2
.

Note now that

∇2f̃ =

[
2T + 2 2

2 2T + 2

]

and this is positive definite for T > 0. Hence, the obtained stationary point is a local minimizer for
f̃ .

c) To obtain a solution of the original problem it is enough to compute

x⋆
3 = 1− x⋆

1 − x⋆
2 =

T

T + 2
.

d) To compute the stationary points of fp consider the equations

0 = ∇fp =




2Tx1 +
sign(x1 + x2 + x3 − 1)

ǫ

2Tx2 +
sign(x1 + x2 + x3 − 1)

ǫ

2x3 +
sign(x1 + x2 + x3 − 1)

ǫ



.
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These can be rewritten as

2Tx1 = 2Tx2 = 2x3 = − sign(x1 + x2 + x3 − 1)

ǫ

yielding x1 = x3/T and x2 = x3/T. Replacing this in the last equation yields

2x3 = − sign(x3/T + x3/T + x3 − 1)

ǫ
.

Note now that the solution of this equation may be independent of ǫ only if x3/T+x3/T+x3−1 = 0,
implying x3 = x⋆

3. Finally, this implies that x1 = x⋆
1 and x2 = x⋆

2, i.e. the unique stationary point
of fp coincides with the optimal solution obtained in part c).

Exercise 32 Consider the optimization problem




min
x1,x2

x1x2,

x2
1 + x2

2 − 1 ≤ 0.

a) State first order necessary conditions of optimality for such a constrained optimization problem.

b) Using the conditions derived in part a), compute candidate optimal solutions.

c) This constrained optimization problem can be transformed into an unconstrained optimization prob-
lem by defining the so-called barrier function

Bǫ(x) = x1x2 +
ǫ

1− x2
1 − x2

2

,

with ǫ > 0, and considering the unconstrained minimization of Bǫ(x). Determine the stationary
points xǫ of Bǫ(x).
(Hint: show that all stationary points x̄ = (x̄1, x̄2) are such that x̄1 = −x̄2, and then note that the
solutions of the equation

x− 2ǫx

(2x2 − 1)2
= 0

are x = 0 and x = ±
√

2±2
√

2ǫ

2
.)

Discuss the feasibility of the obtained stationary points xǫ. Compute lim
ǫ→0

xǫ and compare this result

with the results obtained in parts a) and b).

d) Discuss the advantages and disadvantages of the proposed barrier function method in comparison
with the sequential penalty function method discussed in Section 3.4.1.

Solution 32

a) The Lagrangian of the problem is

L = x1x2 + ρ(x2
1 + x2

2 − 1).

The first order necessary conditions of optimality are

0 = ∇xL =

[
x2 + 2ρx1

x1 + 2ρx2

]
,

x2
1 + x2

2 − 1 ≤ 0, ρ ≥ 0, (x2
1 + x2

2 − 1)ρ = 0.

b) From the first two equations we have that if ρ 6= 1/2 then x1 = x2 = 0. If ρ = 1/2 then x1 + x2 = 0
and from the last equation x2

1 + x2
2 − 1 = 0. As a result x1 = ± 1√

2
and x2 = ∓ 1√

2
. In conclusion we

have three candidate solutions

P1 = (0, 0), P2 =

(
1√
2
,− 1√

2

)
, P3 =

(
− 1√

2
,

1√
2

)
.
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c) To determine the stationary points of Bǫ, consider the equation

0 = ∇xBǫ =



x2 + 2ǫ

x1

(1− x2
1 − x2

2)
2

x1 + 2ǫ
x2

(1− x2
1 − x2

2)
2


 .

From these we obtain
x2

x1
= −2ǫ

1

(1− x2
1 − x2

2)
2
,

x1

x2
= −2ǫ

1

(1− x2
1 − x2

2)
2
,

hence x1/x2 < 0 and x2/x1 = x1/x2. As a result x1 = −x2. Replacing in the second equation yields

x1 = 2ǫ
x1

(1− 2x2
1)

2

hence we obtain five candidate solutions, namely

Pa = (0, 0), Pb =

(√
2 + 2

√
2ǫ

2
,−
√

2 + 2
√
2ǫ

2

)
, Pc =

(
−
√

2 + 2
√
2ǫ

2
,

√
2 + 2

√
2ǫ

2

)
,

Pd =

(√
2− 2

√
2ǫ

2
,−
√

2− 2
√
2ǫ

2

)
, Pe =

(
−
√

2− 2
√
2ǫ

2
,

√
2− 2

√
2ǫ

2

)
.

Note that Pa, Pd and Pe are feasible, whereas Pb and Pc are not feasible. Finally Pa = P1,

lim
ǫ→0

Pb = lim
ǫ→0

Pd = P2

and
lim
ǫ→0

Pc = lim
ǫ→0

Pe = P3.

d) The proposed method is preferable to the sequential penalty function method because it provides
feasible solutions also for ǫ > 0. However, the function Bǫ is not defined on all IR2, hence it may be
difficult to perform a numerical minimization.

Exercise 33 Let Q ∈ IRn×n with Q = Q′ > 0, x ∈ IRn, A ∈ IRm×n b ∈ IRm and y ∈ IRm. Consider the
minimization problem

P :





min
x

1

2
x′Qx,

Ax− b ≤ 0,

and the so-called dual problem

D :





min
y

1

2
y′AQ−1A′y + b′y,

−y ≤ 0.

a) Write first order necessary conditions of optimality for the problem P . (Denote the multiplier with
ρ.)

b) Write first order necessary conditions of optimality for the problem D. (Denote the multiplier with
σ.)

c) Let y⋆ and σ⋆ be such that the optimality conditions in part b) hold. Show that

x⋆ = −Q−1A′y⋆, ρ⋆ = y⋆,

are such that the optimality conditions in part a) hold.
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d) Consider the minimization problem

P1 :





min
x

1

2
x′x,

x1 + 1 ≤ 0,

with x ∈ IRn and x = [x1, x2, · · · , xn]
′. Exploiting the results above solve this problem. (Hint: write

the dual D1 of problem P1, solve problem D1, and then obtain a solution to problem P1 exploiting
the results in part c).)

Solution 33

a) Let LP =
1

2
x′Qx+ρ′(Ax−b) be the Lagrangian for problem P . The first order necessary conditions

of optimality for problem P are

Qx⋆ +A′ρ⋆ = 0, Ax⋆ − b ≤ 0, ρ⋆ ≥ 0, ρ′⋆(Ax⋆ − b) = 0.

b) Let LD =
1

2
y′AQ−1A′y+ b′y+ σ′(−y) be the Lagrangian for problem D. The first order necessary

conditions of optimality for problem D are

AQ−1A′y⋆ + b− σ⋆ = 0, −y⋆ ≤ 0, σ⋆ ≥ 0, σ′
⋆(−y⋆) = 0.

c) Replacing x⋆ = −Q−1A′y⋆ and ρ⋆ = y⋆ in the equations in part a) yields

Q(−Q−1A′y⋆) + A′y⋆ = 0,

A(−Q−1A′y⋆)− b ≤ 0,

y⋆ ≥ 0,

y′⋆(A(−Q−1A′y⋆)− b) = 0.

The first of the above equations holds trivially. For the second one note that

A(−Q−1A′y⋆)− b = −σ⋆ ≤ 0,

by the third of the equations in b). The third equation holds by the second of the equations in
b). The fourth equation holds exploiting the first and the fourth of the equations in b), hence we
conclude the claim.

d) Problem P1 is of the form of problem P with Q = I , A = [1, 0, · · · , 0] and b = −1. Hence, the dual
D1 is

D1 :





min
y

1

2
y2 − y,

−y ≤ 0,

with y ∈ IR. The problem D1 has the solution y⋆ = 1 and σ⋆ = 0. Hence, the solution to problem
P1 is

x⋆ = −[1, 0, · · · , 0]′, ρ⋆ = 1.

Exercise 34 Consider the optimization problem




min
x1, x2

x2
1 + x2,

x2
1 + (x2 − 1)2 = 4.

a) Sketch in the (x1, x2)-plane the level lines of the function to be minimized and the admissible set.
Hence show that all points in the admissible set are regular points for the constraints.

b) Using only graphical considerations determine the solution of the considered problem.
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c) Show that the considered problem can be solved by eliminating the variable x1 and obtaining the
optimization problem {

min
x2

4− (x2 − 1)2 + x2

−1 ≤ x2 ≤ 3.

d) Solve the optimization problem in part c) and hence obtain a solution for the considered optimization
problem.

e) Suppose that one wants to solve the considered optimization problem using recursive quadratic
programming methods. Write the quadratic programming problem associated with the considered
optimization problem.

Solution 34

a) The level lines and the admissible set are depicted in the figure below. Note that the constraint
is always active, and that the gradient of the constraint is never zero, hence all points are regular
points.

b) The solution of the problem is obtained when the level set of f is tangent to the admissible set in
its lower point. As a result, the optimal point is (x1, x2) = (0,−1).

c) We can solve the constraint yielding

x2
1 = 4− (x2 − 1)2.

Replacing in f we obtain the function to minimize

f̃ = 4− (x2 − 1)2 + x2.

Note that x2 is not free. In fact, from the constraint

(x2 − 1)2 = 4− x2
1 ≤ 4

we obtain
−1 ≤ x2 ≤ 3.

This shows that eliminating the variable x1 yields the constrained scalar problem given in part b).

d) Note that a solution to the minimization problem in part c) is obtained at a stationary point of f̃
or at the boundary of the admissible set. The function f̃ has a stationary point (a local maximizer)
for x2 = 3/2. Note now that

f̃(−1) = −1, f̃(3/2) = 21/4, f̃(3) = 3.

Therefore the function f̃ attains its minimum for x2 = −1. Replacing this into the constraint yields
x1 = 0 and this coincides with the optimal solution obtained in part b).

e) Consider the optimization problem min
x
f(x) subject to g(x) = 0. Using recursive quadratic pro-

gramming methods to solve this problem one obtains the quadratic programming problem

PQk+1
1





min
δ
f(xk) +∇f(xk)

′δ +
1

2
δ′∇2

xxL(xk, λk)δ,

g(xk) +
∂g(xk)

∂x
δ = 0,

where L = f + λ′g, δ = x− xk, and xk and λk are the current estimates of the solution and of the
multiplier. For the specific example one has to replace the functions f and g in the above expression
yielding

PQk+1
1





min
δ1,δ2

x2
1,k + x2,k + 2x1,kδ1 + δ2 + (1 + λk)δ

2
1 + λkδ

2
2 ,

x2
1,k + (x2,k − 1)2 − 4 + 2x1,kδ1 + 2(x2,k − 1)δ2 = 0.
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Exercise 35 Consider the optimization problem




max
x1, x2, x3

xα
1 xα

2 xα
3

x1 + x2 + x3 − 1 = 0

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0,

with α > 1.

a) State first order necessary conditions of optimality for this constrained optimization problem.

b) Using the conditions derived in part a), compute candidate optimal solutions. Show that there is
only one candidate solution such that x1 6= 0, x2 6= 0 and x3 6= 0.

c) Consider the candidate optimal solution with x1 6= 0, x2 6= 0 and x3 6= 0 determined in part
b). Show using second order sufficient conditions that such a candidate optimal point is a local
maximizer.

Solution 35

a) Let (note the change of sign in the objective function to transform the problem into a minimization
problem)

L = −xα
1x

α
2 x

α
3 + λ(x1 + x2 + x3 − 1) + µ1(−x1) + µ2(−x2) + µ3(−x3).

The first order necessary conditions of optimality for the problem are

−αxα−1
1 xα

2 x
α
3 + λ− µ1 = 0, −αxα

1 x
α−1
2 xα

3 + λ− µ2 = 0, −αxα
1 x

α
1x

α−1
3 + λ− µ3 = 0,

x1 + x2 + x3 − 1 = 0, −x1 ≤ 0, −x2 ≤ 0, −x3 ≤ 0,

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, x1µ1 = 0, x2µ2 = 0, x3µ3 = 0.

b) Consider the condition x1µ1 = 0. This implies µ1 = 0 or x1 = 0. If x1 = 0 then, since α > 1,

λ = µ1 = µ2 = µ3 = κ ≥ 0,

for some constant κ. If κ > 0 then x2 = 0 and x3 = 0 which is not feasible. If κ = 0 then any x2

and x3 such that
x2 + x3 − 1 = 0, x2 ≥ 0, x3 ≥ 0,
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satisfy necessary conditions of optimality. We obtain similar conclusions from the conditions x2µ2 =
0 and x3µ3 = 0. To obtain other candidate solutions we have to consider the case x1 6= 0, x2 6= 0
and x3 6= 0. In this case, µ1 = µ2 = µ3 = 0, and

αxα−1
1 xα

2 x
α
3 − λ = 0,

αxα
1 x

α−1
2 xα

3 − λ = 0,

αxα
1 x

α
1 x

α−1
3 − λ = 0.

The above equations imply x1 = x2 = x3 which, together with the constraint x1 + x2 + x3 − 1 = 0,
yields the candidate optimal solution (x1, x2, x3) = (1/3, 1/3, 1/3). In summary, all candidate
optimal solutions are

x1 = x2 = x3 = 1/3

x1 = 0, x2 + x3 = 1, x2 ≥ 0, x3 ≥ 0,

x2 = 0, x1 + x3 = 1, x1 ≥ 0, x3 ≥ 0,

x3 = 0, x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0.

c) At the point (x1, x2, x3) = (1/3, 1/3, 1/3) the only active constraint is the equality constraint.
Hence, the second order sufficient conditions of optimality are s′∇2Ls > 0, for all s 6= 0 such that
[1, 1, 1]s = 0. Note now that at the considered point

∇2L = −
(
1

3

)3α−2

[
α(α− 1) α2 α2

α2 α(α− 1) α2

α2 α2 α(α− 1)

]

and the admissible s can be parameterized as

sa = [β, 0,−β]′ sb = [γ,−γ, 0]′.

As a result
[sa sb]

′∇2L[sa sb] > 0,

which show that the considered point is a local minimizer (hence a maximizer for the original
problem).

Exercise 36 Consider the problem of approximating a matrix Q ∈ IRn×n with a matrix of the form
A = ρI , with I the identity matrix of dimension n× n and ρ ≥ 0.
As a measure of the distance between the two matrices we could use either the square of the Frobenius
norm or the infinity norm. The Frobenius norm of a matrix L ∈ IRn×n is defined as

‖L‖F =

√√√√
n∑

i=1

n∑

j=1

L2
ij ,

where the Lij ’s denote the entry of the matrix L. The infinity norm of a matrix L ∈ IRn×n is defined as

‖L‖∞ = max
i

n∑

j=1

|Lij |.

The optimal approximation problem is thus the problem of determining the nonnegative constant ρ which
minimizes

‖Q− ρI‖2F
or

‖Q− ρI‖∞.
a) Show that the considered optimal approximation problems can be written as constrained minimiza-

tion problems with one inequality constraint.
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b) Consider the Frobenius norm. Solve the problem derived in part a). Show that if trace(Q) > 0 then
the optimal ρ is positive, and if trace(Q) ≤ 0 then the optimal ρ is zero.

c) Consider the infinity norm and assume that n = 2, hence

Q =

[
Q11 Q12

Q21 Q22

]
,

that 0 < Q11 < Q22 and that |Q12| = |Q21|.

i) Sketch the graph of the function to be minimized.

ii) Argue that the optimal solution ρ⋆ is such that

0 < Q11 < ρ⋆ < Q22.

iii) Compute the optimal solution ρ⋆.

Solution 36

a) The optimal approximation problems can be written as

Pf :





min
ρ

‖Q− ρI‖2F ,

ρ ≥ 0,

or P∞ :





min
ρ

‖Q− ρI‖∞,

ρ ≥ 0.

b) Note that
‖Q− ρI‖2F = (Q11 − ρ)2 +Q2

12 + · · ·+Q2
1n+

Q2
21 + (Q22 − ρ)2 +Q2

23 + · · ·+Q2
2n + · · ·+

Q2
n1 + · · ·+Q2

2,n−1 + (Qnn − ρ)2

hence

‖Q− ρI‖2F = nρ2 − 2ρ

trace(Q)︷ ︸︸ ︷
(Q11 +Q22 + · · ·+Qnn) + constant terms.

If trace(Q) > 0 the function ‖Q− ρI‖2F , which is convex, has a global minimizer for ρ =
trace(Q)

n
.

If trace(Q) ≤ 0 the function ‖Q − ρI‖2F is monotonically increasing for ρ ≥ 0, hence it achieves its
minimum, in the set ρ ≥ 0, for ρ = 0.

c) The optimal approximation problem is now

P̃∞ :





min
ρ

(
max

(
|Q11 − ρ|+ |Q12|, |Q21|+ |Q22 − ρ|

))
,

ρ ≥ 0.

A sketch of the function to be minimized is in the figure below. From this it is clear that 0 < Q11 <
ρ⋆ < Q22. Note that ρ⋆ is such that

|Q11 − ρ⋆|+ |Q12| = |Q21|+ |Q22 − ρ⋆|.

However, because 0 < Q11 < ρ⋆ < Q22 this can be rewritten as

ρ⋆ − |Q11|+ |Q12| = |Q21|+ |Q22| − ρ⋆.

As a result (recall that Q11 > 0, Q22 > 0 and |Q12| = |Q21|)

ρ⋆ =
Q11 +Q22

2
.
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|Q12| = |Q21|

ρ⋆ ρQ11 Q22

|Q11 − ρ| + |Q12|

|Q12| + |Q22 − ρ|

max(|Q11 − ρ| + |Q12|, |Q21| + |Q22 − ρ|)

Exercise 37 Consider the optimization problem




min
x1,x2

x2
1 + x2,

x2
1 + (x2 − 1)2 ≥ 1,

x2
1 + (x2 − 2)2 ≤ 4.

a) Sketch in the (x1, x2)-plane the admissible set and show that there is a point which is not a regular
point for the constraints.

b) State first order necessary conditions of optimality for such a constrained optimization problem.

c) Find candidate optimal solutions for the considered problem.

d) Prove that the non-regular point for the constraints is the global minimizer for the considered
problem.

Solution 37

a) The admissible set is the set outside a circle of radius one and centered at (0, 1) and inside a circle
of radius two and centered at (0, 2), which is the shaded region in the figure below. The point (0, 0)
is not a regular point for the constraints because at this point both constraints are active and their
gradients, namely [

2x1

2(x2 − 1)

]
,

[
2x1

2(x2 − 2)

]
,

evaluated at the point, are linearly dependent.

b) To write necessary conditions of optimality rewrite first the constraints as

1− x2
1 − (x2 − 1)2 ≤ 0 x2

1 + (x2 − 2)2 − 4 ≤ 0

and define the Lagrangian function

L(x1, x2, µ1, µ2) = x2
1 + x2 + µ1(1− x2

1 − (x2 − 1)2) + µ2(x
2
1 + (x2 − 2)2 − 4).

The necessary conditions of optimality are

dL

dx1
= 2x1 − 2µ1x1 + 2µ2x1 = 0,

dL

dx2
= 1− 2µ1(x2 − 1) + 2µ2(x2 − 2) = 0,

1− x2
1 − (x2 − 1)2 ≤ 0, x2

1 + (x2 − 2)2 − 4 ≤ 0,

µ1 ≥ 0, µ2 ≥ 0,

µ1(1− x2
1 − (x2 − 1)2) = 0, µ2(x

2
1 + (x2 − 2)2 − 4) = 0.
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c) To find candidate optimal solutions we exploit the complementarity conditions, hence we have four
possibilities.

• µ1 = 0 and µ2 = 0.
This selection yields 0 = dL

dx2
= 1, hence no candidate optimal solution.

• µ1 = 0 and x2
1 + (x2 − 2)2 − 4 = 0.

This selection yields, from 0 = dL
dx1

, either x1 = 0 or µ2 = −1. The first option yields x2 = 0
or x2 = 4, whereas the second option violates the positivity of µ2. Moreover, the selection
x1 = 0 and x2 = 4 yields, from 0 = dL

dx2
, µ2 < 0, hence it is not a candidate solution.

• 1− x2
1 − (x2 − 1)2 = 0 and µ2 = 0.

This selection yields, from 0 = dL
dx1

, x1 = 0 or µ1 = 1. The first option yields x2 = 0 or

x2 = 2. The second option yields, from 0 = dL
dx2

, x2 = 3/2, hence, from 1−x2
1 − (x2−1)2 = 0,

x1 = ±
√
3

2
.

• 1− x2
1 − (x2 − 1)2 = 0 and x2

1 + (x2 − 2)2 − 4 = 0.
The only point consistent with these conditions is (0, 0).

In summary the candidate solutions obtained so far are as follows.

• (0, 0).

• (0, 2).

•
(
±

√
3

2
, 3
2

)
.

Hence there are four candidate optimal solutions.

d) The nonregular point (0, 0) is such that x2
1 + x2 = 0. Note now that the function x2

1 + x2 is always
nonnegative in the admissible set and it is zero, in the admissible set, if and only if x1 = x2 = 0.
Hence the nonregular point is a global minimizer for the considered problem. Note that it is not
possible to associate, in a unique way, a pair of optimal multipliers to this optimal point.

(0,0)

(0,1)

(0,2)

x1

x2



120 CHAPTER 3. NONLINEAR PROGRAMMING

Exercise 38 Consider the optimization problem





min
x1, x2

x2
1 + x2

2,

−x1 ≤ 0,

x2 − x1 − 1 = 0.

a) Sketch in the (x1, x2)-plane the level surfaces of the function to be minimized and the admissible
set. Hence show that all points in the admissible set are regular points for the constraints.

b) Using only graphical considerations determine the solution of the considered problem.

c) This constrained optimization problem can be transformed into an unconstrained optimization prob-
lem by defining the so-called mixed penalty-barrier function

Fǫ(x1, x2) = x2
1 + x2

2 +
1

ǫ
(x2 − x1 − 1)2 +

ǫ

x1
,

with ǫ > 0 and considering the unconstrained minimization of Fǫ(x1, x2). Determine the stationary
points of Fǫ(x1, x2).
(Hint: solve∇x2

Fǫ(x1, x2) = 0 for x2, and replace the obtained solution in the equation∇x1
Fǫ(x1, x2) =

0. Solve this last equation assuming that x1 = αǫ1/2, for some α > 0 to be determined, and ne-
glecting all terms ǫk, for k ≥ 1/2.)

d) Show that the stationary point of Fǫ(x1, x2) computed in part c) tends, as ǫ tends to zero, to the
optimal solution determined in part b).

Solution 38

a) The admissible set, and the level surfaces of the function to be minimized are as in the figure below.
There are two constraints active at the point (0, 1) and their gradients, at this point, are independent.
At any other admissible point there is only one active constraint, the equality constraint, and its
gradient is always nonzero (it is a constant vector). Thus all points are regular points for the
constraints.

b) The optimal solution is obtained considering the smallest circle centered at the origin intersecting
the admissible set. Hence, the optimal solution is the point (0, 1).

c) The stationary points of the mixed penalty-barrier function are the solutions of

0 = ∇Fǫ =




2x1 −
2

ǫ
(x2 − x1 − 1)− ǫ

x2
1

2x2 +
2

ǫ
(x2 − x1 − 1)


 .

Solving the second equation yields

x2 =
x1 + 1

ǫ+ 1
,

and replacing this in the first equation yields

0 =
x3
1(2ǫ + 4) + 2x2

1 − ǫ(1 + ǫ)

(ǫ+ 1)x2
1

.

Setting x1 = α
√
ǫ and neglecting all ǫk terms, with k ≥ 1/2, yields 0 = (2α2 − 1), hence (recall that

α > 0) x1 =
√
ǫ/2, and x2 =

√
ǫ/2+1

ǫ+1
.

d) As ǫ → 0, the stationary point of the mixed penalty-barrier function tends to (0, 1), which is the
optimal solution of the considered problem.
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(-1,0)

(0,1)

x1

x2

f = 1/16

f = 1

f = 4

Exercise 39 Consider the optimization problem




min
x1, x2

x1x2,

1

2
x2
1 + 2x2

2 = 1.

a) State first order necessary conditions of optimality for such a constrained optimization problem.

b) Using the conditions in part a) determine candidate optimal solutions for the considered problem.

c) Transform the minimization problem into an unconstrained minimization problem using the method
of the exact augmented Lagrangian functions and write explicitly the exact augmented Lagrangian
function for the considered problem.

d) Show that the candidate optimal solutions determined in part b) are stationary points of the exact
augmented Lagrangian function.

e) Find the global minimizer for the considered problem. Is the global minimizer unique?

Solution 39

a) Define the Lagrangian

L(x1, x2, λ) = x1x2 + λ(
1

2
x2
1 + 2x2

2 − 1).

The first order necessary conditions of optimality are

0 =
dL

dx1
= x2 + λx1, 0 =

dL

dx2
= x1 + 4λx2,

1

2
x2
1 + 2x2

2 − 1 = 0.

b) The conditions dL
dx1

= dL
dx2

= 0 can be rewritten as

[
λ 1
1 4λ

] [
x1

x2

]
= 0.

If 4λ2 − 1 6= 0 the above equation implies x1 = x2 = 0, which is not an admissible point. If
4λ2 − 1 = 0, or λ = ± 1

2
. then x2 = ∓ 1

2
x1, and replacing in the constrains yields the candidate
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solutions with the corresponding multipliers, namely

(x1, x2, λ) =
(
1,−1

2
,
1

2

)
, (x1, x2, λ) =

(
−1,

1

2
,
1

2

)
,

(x1, x2, λ) =
(
1,

1

2
,−1

2

)
, (x1, x2, λ) =

(
−1,−1

2
,−1

2

)
.

c) The exact augmented Lagrangian function for a constraint optimization problem with equality
constraints is

S(x, λ) = f(x) + λ′g(x) +
1

ǫ
‖g(x)‖2 + η‖∂g(x)

∂x
∇xL(x, λ)‖2,

with ǫ > 0 and η > 0. For the considered problem, we have

S(x1, x2, λ) = x1x2 + λ(
1

2
x2
1 + 2x2

2 − 1) +
1

ǫ
(
1

2
x2
1 + 2x2

2 − 1)2 + η

([
x1 4x2

] [ x2 + λx1

x1 + 4λx2

])2

.

d) The stationary points of the function S(x1, x2, λ) are the solutions of the equations

0 =
dS

dx1
= x2 + λx1 +

2x1

ǫ
(
1

2
x2
1 + 2x2

2 − 1) + 2η(5x1x2 + λx2
1 + 16λx2

2)(5x2 + 2λx1),

0 =
dS

dx2
= x1 + 4λx2 +

8x2

ǫ
(
1

2
x2
1 + 2x2

2 − 1) + 2η(5x1x2 + λx2
1 + 16λx2

2)(5x1 + 32λx2),

0 =
dS

dλ
=

1

2
x2
1 + 2x2

2 − 1 + 2η(5x1x2 + λx2
1 + 16λx2

2)(x
2
1 + 16x2

2).

Replacing the candidate points obtained in part b) shows that indeed they are stationary points for
the augmented Lagrangian function. (Note that this is true for any ǫ and η.)

e) To find the global minimizer we evaluate the function to be minimized at the candidate optimal
solutions:

(x1x2)x1=1,x2=−1/2 = −1

2
, (x1x2)x1=−1,x2=1/2 = −1

2
,

(x1x2)x1=1,x2=1/2 =
1

2
, (x1x2)x1=−1,x2=−1/2 =

1

2
.

Hence, the points (1,−1/2) and (−1, 1/2) are both global minimizers. (Note that the points (1, 1/2)
and (−1,−1/2) are both global maximizers.)

Exercise 40 Consider the optimization problems

Pmin





min
x1, x2

|x1|+ |x2|,

x2
1 + x2

2 = 1,

and

Pmax





max
x1, x2

|x1|+ |x2|,

x2
1 + x2

2 = 1.

a) Sketch in the (x1, x2)-plane the admissible set and the level lines of the function |x1|+ |x2|.
b) Using only graphical considerations determine the solutions of the considered problems.

c) State first order necessary conditions of optimality for these constrained optimization problems.
Show that the optimal solutions determined in part b) satisfy the necessary conditions of optimality.
(Hint: use the fact that sign(0) = 0.)
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d) Write a penalty function Fǫ for problem Pmax. Show that, for ǫ > 0 and sufficiently small, the
stationary points of Fǫ approach the optimal solutions determined in part b). (Do not compute
explicitly the stationary points of Fǫ.)
(Hint: for ǫ sufficiently small, the stationary points of Fǫ are such that x1 6= 0 and x2 6= 0.)

Solution 40

a) The admissible set is the circle of radius one and with center at (0, 0). The level lines of the function
|x1|+ |x2| are squares with their vertices on the x1- and x2- axes, as indicated in the figure below.

b) The solution to problem Pmin is obtained considering the smallest square level set intersecting the
admissible set. Hence there are four optimal solutions, namely the points (0,±1) and (±1, 0).
The solution to problem Pmax is obtained considering the largest square level set intersecting the

admissible set. Hence there are four optimal solutions, namely the points

(
±
√
2

2
,±

√
2

2

)
.

c) Define the Lagrangian

L(x1, x2, λ) = ±(|x1|+ |x2|) + λ(x2
1 + x2

2 − 1),

where the + sign has to be used for Pmin and the − sign has to be used for Pmax. The first order
necessary conditions of optimality are

0 =
dL

dx1
= ±sign(x1) + 2λx1, 0 =

dL

dx2
= ±sign(x2) + 2λx2, x2

1 + x2
2 − 1 = 0,

and a direct substitution shows that the solutions determined in part b) satisfy the necessary
conditions of optimality.

d) A penalty function for problem Pmax is

Fǫ(x1, x2) = −(|x1|+ |x2|) +
1

ǫ
(x2

1 + x2
2 − 1)2.

The stationary points of Fǫ are the solutions of the equations

0 = −sign(x1) +
4

ǫ
x1(x

2
1 + x2

2 − 1), 0 = −sign(x2) +
4

ǫ
x2(x

2
1 + x2

2 − 1).

If we assume that the stationary points of Fǫ, for ǫ sufficiently small, are away from x1 = 0 and
from x2 = 0, then the stationary points are such that

sign(x1)

x1
=

sign(x2)

x2
,

which implies x2 = ±x1. Replacing this in the first of the equations above yields

0 = −sign(x1) +
4

ǫ
x1(2x

2
1 − 1),

or equivalently
ǫ

4
sign(x1) = x1(2x

2
1 − 1).

For ǫ sufficiently small the solutions of this equation are of the form

x1 = ±
√
2

2
+ o(ǫ).

As a result, the stationary points of Fǫ are of the form
(
±
(√

2

2
+ o(ǫ)

)
,±
(√

2

2
+ o(ǫ)

))
,

i.e. they are close to the optimal solutions of the problem Pmax for ǫ sufficiently small.
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Exercise 41 Consider the optimization problem





min
x1, x2

x3
1 − x2

1x2 + 2x2
2,

x1 ≥ 0,

x2 ≥ 0.

a) State first order necessary conditions of optimality for this constrained optimization problem.

b) Using the conditions derived in part a) compute candidate optimal solutions. Show that there is one
candidate solution on the boundary of the admissible set and one in the interior of the admissible
set.

c) Using second order sufficient conditions of optimality show that the candidate solution inside the
admissible set is not a local minimizer.

d) Show that the candidate optimal solution on the boundary of the admissible set is a local minimizer.
(Hint: show that the function to be minimized is zero at the candidate optimal solution, and it is
strictly positive in all admissible points in a neighborhood of the candidate optimal solution).

e) Show that the function to be minimized is not bounded from below in the admissible set. Hence,
argue that the problem does not have a global solution.
(Hint: consider the function to be minimized along the line x2 = 2x1, and study its behaviour for
x1 > 0 and large.)

Solution 41

a) Define the Lagrangian

L(x1, x2, ρ1, ρ2) = x3
1 − x2

1x2 + 2x2
2 + ρ1(−x1) + ρ2(−x2).

The first order necessary conditions of optimality are

0 =
dL

dx1
= 3x2

1 − 2x1x2 − ρ1, 0 =
dL

dx2
= −x2

1 + 4x2 − ρ2,

−x1 ≤ 0, −x2 ≤ 0, ρ1 > 0, ρ2 > 0,

−x1ρ1 = 0, −x2ρ2 = 0.

b) Using the complementarity conditions, i.e. the last two conditions, we have four possibilities.

• ρ1 = 0 and ρ2 = 0. This yields the candidate optimal solutions (x1, x2) = (0, 0) and (x1, x2) =
(6, 9).
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• ρ1 = 0 and x2 = 0. This yields the candidate optimal solution (x1, x2) = (0, 0).

• x1 = 0 and ρ2 = 0. This yields the candidate optimal solution (x1, x2) = (0, 0).

• x1 = 0 and x2 = 0.

In summary there are two candidate optimal solutions: the point (0, 0), on the boundary of the
admissible set, and the point (6, 9) in the interior of the admissible set.

c) The second order sufficient condition of optimality for the candidate point in the interior of the
admissible set is ∇2L(6, 9) > 0. Note that

∇2L(6, 9) = 2

[
9 −6

−6 2

]
,

and that det∇2L(6, 9) < 0, which implies that∇2L(6, 9) is not positive definite. Hence the candidate
optimal point in the interior of the admissible set is not a local minimizer (tt is a saddle point).

d) To show that the point (0, 0) is a local minimizer note that the function f to be minimized is such
that f(0, 0) = 0, f(x1, 0) > 0 for x1 > 0, and f(0, x2) > 0 for x2 > 0. Consider now straight lines
described by x2 = αx1, with α > 0. Then

f(x1, αx1) = α2
(
1− α

α2
x3
1 + 2x2

1

)
,

which is positive for all α > 0 and all x1 > 0 and sufficiently small. Since the function f is zero at
the candidate optimal solution (0, 0) and strictly positive in all admissible point in a neighborhood
of this point, then the point is a local minimizer.

e) The function f along the line x2 = 2x1 is given by f(x1, 2x1) = −x3
1 + 4x2

1 and this function is not
bounded from below, i.e. lim

x1→∞
f(x1, 2x1) = −∞. This implies that the considered optimization

problem does not have a global solution.

Exercise 42 Consider the optimization problem




max
x1, x2, x3

(x1x2 + x2x3 + x1x3),

x1 + x2 + x3 = 3.

a) State first order necessary conditions of optimality for this constrained optimization problem and
show that there exists only one candidate optimal solution.

b) Using second order sufficient conditions of optimality show that the candidate solution is a local
maximizer.

c) Consider the use of an exact penalty function for the solution of the problem.

i) Write an exact penalty function G for the problem.

ii) Show that the function is well-defined for every (x1, x2, x3).

iii) Show that the exact penalty function has only one stationary point and this coincides with
the optimal solution of the problem determined in part b).

Solution 42

a) Define the Lagrangian (note the change in sign due to the transformation of the maximization
problem into a minimization problem)

L(x1, x2, x3, λ) = −(x1x2 + x2x3 + x1x3) + λ(x1 + x2 + x3 − 3).

The first order necessary conditions of optimality are

0 =
dL

dx1
= −x2 − x3 + λ, 0 =

dL

dx2
= −x1 − x3 + λ,
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0 =
dL

dx3
= −x2 − x1 + λ, 0 = x1 + x2 + x3 − 3.

This is system a linear equations with the unique solution (x1, x2, x3, λ) = (1, 1, 1, 2). Hence the
problem has only one candidate optimal solution.

b) Note that

∇2L =

[
0 −1 −1

−1 0 −1
−1 −1 0

]

and
∂g

∂x
=
[

1 1 1
]
.

The candidate optimal solution is a minimizer if s′∇2Ls > 0 for all s 6= 0 such that s′ ∂g
∂x

= 0. The
set of such s’s can be described by linear combinations of the vectors

s′1 =
[

1 −1 0
]

s′2 =
[

1 0 −1
]
.

Note that

[s1, s2]
′∇2L[s1, s2] =

[
2 1
1 2

]
> 0,

hence the candidate optimal solution is a local minimizer.

c) The exact penalty function for a constraint optimization problem with equality constraints is

G(x) = f(x)− g′(x)

(
∂g

∂x

∂g′

∂x

)−1
∂g

∂x
∇f +

1

ǫ
‖g(x)‖2,

with ǫ > 0.

i) For the considered problem we have

G(x1, x2, x3) = −(x1x2+x2x3+x1x3)+
2

3
(x1+x2+x3−3)(x1+x2+x3)+

1

ǫ
(x1+x2+x3−3)2.

ii) The function is well-defined for all (x1, x2, x3) since
∂g

∂x

∂g′

∂x
is a full rank matrix (it is a nonzero

constant).

iii) The stationary points of the function G(x1, x2, x3) are the solutions of the equations

0 = ∇G =




1

3
(4x1 + x2 + x3)− 2 +

2

ǫ
(x1 + x2 + x3 − 3)

1

3
(x1 + 4x2 + x3)− 2 +

2

ǫ
(x1 + x2 + x3 − 3)

1

3
(x1 + x2 + 4x3)− 2 +

2

ǫ
(x1 + x2 + x3 − 3)



.

These equations have a unique solution (x1, x2, x3) = (1, 1, 1) which does not depend upon ǫ
and coincides with the optimal solution determined in part b).

Exercise 43 A chain with three links, each of length one, hangs between two points at the same height,
a distance L > 1 apart (see the figure below). To find the form in which the chain hangs we minimize the
potential energy.

Let (xi, yi) be the displacement of the right end of the ith link , from the right end of the (i− 1)th link.
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x1

x1 + x2

y1

y1 + y2

L

Link 1

Link 2

Link 3

The potential energy is therefore

V (y1, y2, y3) =
1

2
y1 + (y1 +

1

2
y2) + (y1 + y2 +

1

2
y3).

a) The condition that the hanging points are a distance L apart can be translated in the constraint

x1 + x2 + x3 = L.

Express this constraint in terms of the variables yi.
(Hint: use Pythagoras’ Theorem!)

b) Show that the condition that the height of the hanging points is the same can be expressed with
the constraint

y1 + y2 + y3 = 0.

c) Consider the problem of minimizing the potential energy V (y1, y2, y3) subject to the constraints
determined in parts b) and c).

i) Write necessary conditions of optimality for the considered optimization problem.

ii) Using physical considerations it may be noted that candidate optimal solutions should be such
that the chain has a \ / shape or a /̄̄¯̄\ shape. Show that these two shapes yield values for
y1, y2, y3 and for the Lagrangian multipliers such that the necessary conditions of optimality
are met.
(Hint: note that for both shapes y2 = 0.)

iii) By evaluating the potential energy at the candidate optimal solutions determined in part c.ii)
determine the shape that minimizes the potential energy.

Solution 43

a) From the figure above we obtain, for i = 1, 2, 3, x2
i + y2i = 1, hence xi =

√
1− y2i , yielding the

constrain √
1− y21 +

√
1− y22 +

√
1− y23 = L.

b) Since the height of the left hanging point is at zero, and the y-coordinate of the last link is y1+y2+y3
then the condition that both hanging points are at the same height is given by y1 + y2 + y3 = 0.

c) The optimization problem to solve is thus




min
y1,y1,y3

5

2
y1 +

3

2
y2 +

1

2
y3,

√
1− y21 +

√
1− y22 +

√
1− y23 − L = 0,

y1 + y2 + y3 = 0.
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i) Define the Lagrangian

L(y1, y2, y3, λ1, λ2) =
5

2
y1 +

3

2
y2+

1

2
y3+λ1(

√
1− y21 +

√
1− y22 +

√
1− y23 −L)+λ2(y1 + y2+ y3).

The first order necessary conditions of optimality are

0 =
∂L

∂y1
=

5

2
− λ1

y1√
1− y21

+ λ2, 0 =
∂L

∂y2
=

3

2
− λ1

y2√
1− y22

+ λ2,

0 =
∂L

∂y3
=

1

2
− λ1

y3√
1− y23

+ λ2,

√
1− y21 +

√
1− y22 +

√
1− y23 − L = 0, y1 + y2 + y3 = 0.

ii) The indicated shapes are such that y2 = 0 andy1 = −y3. Replacing these conditions in the
necessary conditions of optimality yields

0 =
∂L

∂y1
=

5

2
− λ1

y1√
1− y21

+ λ2, 0 =
∂L

∂y2
=

3

2
+ λ2,

0 =
∂L

∂y3
=

1

2
+ λ1

y1√
1− y21

+ λ2,

2
√

1− y21 + 1− L = 0, 0 = 0.

These equations have the two solutions

y1 = ±1

2

√
3 + 2L− L2, λ1 = ± L− 1√

3 + 2L− L2
, λ2 = −3

2
.

The one with positive y1 corresponds to the /̄̄¯̄\ shape, the one with negative y1 corresponds
to the \ / shape. Note that all square roots are well-defined since L > 1.

iii) The potential energy for the above shapes is V (y1, y2, y3) = 2y1. Hence the candidate optimal
solution with negative y1 yields a local minimizer.

Exercise 44 The economy class luggage policy of an airline on a transatlantic flight reads:

Each passenger is allowed one piece of luggage. The three linear dimensions, when added together, must

not exceed 150 cm.

The problem of maximizing the volume of the luggage can be posed and solved with the following steps.

a) Let x1 > 0, x2 > 0 and x3 > 0 be the three linear dimensions (in cm) of a piece of luggage. Write the
considered optimization problem as a minimization problem subject to one inequality constraint.
(Do not include the constraints x1 > 0, x2 > 0 and x3 > 0 in the formulation of the problem.)

b) State first order necessary conditions of optimality for this constrained optimization problem.

c) Using the conditions derived in part b) compute candidate optimal solutions.

d) Using second order sufficient conditions of optimality determine which of the candidate optimal
solutions determined in part c) is a local maximizer.

e) Which is the geometric shape of the ‘optimal luggage‘?

Solution 44

a) The considered optimization problem can be written as




max
x1,x2,x3

x1x2x3,

x1 + x2 + x3 ≤ 150.
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b) Define the Lagrangian (note the change in sign of the objective function)

L(x1, x2, x3, ρ) = −x1x2x3 + ρ(x1 + x2 + x3 − 150).

The first order necessary conditions of optimality are

0 =
∂L

∂x1
= −x2x3 + ρ, 0 =

∂L

∂x2
= −x1x3 + ρ, 0 =

∂L

∂x3
= −x2x1 + ρ,

ρ ≥ 0, x1 + x2 + x3 − 150 ≤ 0, ρ(x1 + x2 + x3 − 150) = 0.

c) Using the complementarity condition, i.e. the last condition, we have two cases.
Case 1: ρ = 0. This implies x1x2 = x2x3 = x1x3 = 0, yielding the sets of candidate solutions

x1 = x2 = ρ = 0, x3 ≤ 150, x1 = x3 = ρ = 0, x2 ≤ 150, x2 = x3 = ρ = 0, x1 ≤ 150.

Case 2: x1 + x2 + x3 = 150. This yields the candidate solutions

x1 = x2 = ρ = 0, x3 = 150, x1 = x3 = ρ = 0, x2 = 150, x2 = x3 = ρ = 0, x1 = 150,

and
x1 = x2 = x3 = 50, ρ = 502.

d) Note that

∇2L(x1, x2, x3) = −
[

0 x3 x2

x3 0 x1

x2 x1 0

]
.

All candidate solutions obtained in Case 1, for which no constrain is active, are such that ∇2L
has a positive, a negative and a zero eigenvalue. As a result, all solutions obtained in Case 1, are
saddle points. Consider now the candidate solutions obtained in Case 2, and such that ρ = 0. For
such solutions the condition of strict complementarity does not hold, hence it is not possible to use
second order sufficient conditions to classify these points. Finally, consider the candidate optimal
solution

x1 = x2 = x3 = 50, ρ = 502.

The second order sufficient condition require s′∇2L(50, 50, 50)s > 0 for all non-zero s such that

[
1 1 1

]
s = 0.

Such s can be parameterized as

s =
[
s1 s2 −s1 − s2

]
,

yielding
s′∇2L(50, 50, 50)s = 100(s21 + s22 + s1s2),

which is positive for all non-zero s1 and s2. As a result, this candidate optimal solution is a local
minimizer. (It is a local maximizer for the original problem).

e) The optimal luggage is a cube!

Exercise 45 Consider the optimization problem




min
x1,x2

x1x
2
2,

x2
1 + x2

2 ≤ 2.

a) State first order necessary conditions of optimality for this constrained optimization problem.

b) Using the conditions derived in part a) compute candidate optimal solutions.



130 CHAPTER 3. NONLINEAR PROGRAMMING

c) Evaluating the objective function at the candidate optimal solutions determined in part b) derive
the solution of the considered optimization problem.

d) The considered constrained optimization problem can be solved minimizing the so-called logarithmic
penalty function given by

Pl(x1, x2) = x1x
2
2 − ǫ log(2− x2

1 − x2
2),

with ǫ > 0.

i) State first order necessary condition of optimality for Pl.

ii) Show that the stationary points of Pl are such that

x2
2 = 2x2

1.

iii) Using the results in part d.ii) show that the stationary points of Pl are such that

x1(3x
3
1 − 2x1 − ǫ) = 0.

Hence argue that, as ǫ approaches zero the stationary points of Pl approach candidate optimal
solutions for the considered problem.

Solution 45

a) Define the Lagrangian
L(x1, x2, ρ) = x1x

2
2 + ρ(x2

1 + x2
2 − 2).

The first order necessary conditions of optimality are

0 =
∂L

∂x1
= x2

2 + 2ρx1, 0 =
∂L

∂x2
= 2x1x2 + 2ρx2,

x2
1 + x2

2 − 2 ≤ 0, ρ ≥ 0, ρ(x2
1 + x2

2 − 2) = 0.

b) Using the complementarity conditions, i.e. the last condition, we have two possibilities.

• ρ = 0. This yields the candidate optimal solutions

P1 : (x1, x2) = (α, 0)

with |α| ≤
√
2. Note that at (x1, x2) = (±

√
2, 0) the condition of strict complementarity does

not hold.

• x2
1 + x2

2 − 2 = 0. This yields the candidate optimal solutions

P2 : (x1, x2) = (±
√
2, 0),

with ρ ≥ 0, and

P3 : (x1, x2) = (−
√
6

3
,±

√
12

3
),

with ρ =
√

6
3
.

In summary there are infinitely many candidate optimal solutions, some of which such that second
order sufficient conditions cannot be used.

c) The values of the objective function at candidate optimal points are

f(P1) = 0, f(P2) = 0, f(P3) = −4

9

√
6.

Hence P3 is the solution of the considered problem.

d) i) The first order necessary condition of optimality for Pl are

0 =
∂Pl

∂x1
= x2

2 + 2ǫ
x1

2− x2
1 − x2

2

, 0 =
∂Pl

∂x2
= 2x1x2 + 2ǫ

x2

2− x2
1 − x2

2

.
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ii) The equations defining the stationary points of Pl yield, for nonzero x1 and x2,

−2ǫ
1

2− x2
1 − x2

2

=
x2
2

x1
= 2x1,

hence stationary points are such that

x2
2 = 2x2

1.

If x1 = 0 then the necessary conditions yield x2 = 0, and similarly for x2 = 0. Hence, the
above relation holds for any x1 and x2.

iii) Replacing the above relation in the equation

0 =
∂Pl

∂x1

yields

2x1
3x3

1 − 2x1 − ǫ

3x2
1 − 2

= 0

from which we infer that, as ǫ → 0, x1 → 0 or x1 → ±
√
6

3
. As a result, as ǫ goes to zero the

stationary points of Pl approach the candidate optimal solutions of the problem.

Exercise 46 Consider the optimization problem




max
x1,x2,x3

x1 + 2x2 + x3,

x2
1 + x2

2 + x2
3 ≤ 1.

a) State first order necessary condition of optimality for this constrained optimization problem.

b) Using the conditions derived in part a) compute candidate optimal solutions.

c) Using second order sufficient conditions of optimality determine the solution of the optimization
problem.

d) Consider the change of variables

x1 = r cos θ sinφ, x2 = r sin θ sinφ, x3 = r cosφ,

with r ≥ 0, θ ∈ [0, 2π), and φ = [0, 2π).

i) Rewrite the considered optimization problem in the new variables and show that the resulting
problem can be written in the form





max
r,θ,φ

rΨ(θ, φ),

r ≤ 1,

θ ∈ [0, 2π),

φ ∈ [0, 2π),

Determine the function Ψ(θ, φ).

ii) Argue that the problem is equivalent to the unconstrained optimization problem

max
θ,φ

Ψ(θ, φ).

iii) Find candidate solutions of the unconstrained optimization problem in part d.ii), and show
that one of the candidate solutions coincides with the optimal solution determined in part c).
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Solution 46

a) Define the Lagrangian (note the sign change due to the transformation of the maximization problem
into a minimization problem)

L(x1, x2, x3, ρ) = −x1 − 2x2 − x3 + ρ(x2
1 + x2

2 + x2
3 − 1).

The first order necessary conditions of optimality are

0 =
∂L

∂x1
= −1 + 2ρx1, 0 =

∂L

∂x2
= −1 + 2ρx2, 0 =

∂L

∂x2
= −1 + 2ρx3,

ρ ≥ 0, x2
1 + x2

2 + x2
3 − 1 ≤ 0, ρ(x2

1 + x2
2 + x2

3 − 1) = 0.

b) Using the complementarity conditions, i.e. the last condition, we have two possibilities.

• ρ = 0. This does not yield any candidate optimal solution.

• x2
1 + x2

2 + x2
3 − 1 = 0, ρ > 0. This yields the candidate optimal solution

P : (x1, x2, x3) =
1

2ρ
(1, 2, 1)

with ρ ≥ 0 such that 3
2ρ2

= 1.

In summary there is only one candidate optimal solution given by

P : (x1, x2, x3) =

√
6

6
(1, 2, 1).

c) The Hessian of the Lagrangian is ∇2L = 2ρI, with I the identity matrix. Hence, the Hessian
is positive definite at the candidate optimal solution which is therefore a (local) minimizer for the
problem (note that we have changed the sign of the objective function to transform the maximization
problem into a minimization one).

d) i) Applying the change of variable to the objective function yields the transformed objective
function

r(cos θ sinφ+ 2 sin θ sinφ+ cosφ),

whereas the constraint is transformed into r2 ≤ 1, which is equivalent to r ≤ 1 since r ≥ 0.
As a result, the function Ψ is given by

Ψ(θ, φ) = (cos θ sinφ+ 2 sin θ sinφ+ cos φ).

ii) The objective function in the transformed variables is separable, i.e. it is the product of two
functions of different variables, namely r and Ψ. As a result, the maximization is achieved
maximizing Ψ and r. The latter is maximized for r = 1. The former has to be maximized
for θ ∈ [0, 2π) and φ ∈ [0, 2π). However, since Ψ is periodic in θ and φ it can be maximized
disregarding the constraints.

iii) The stationary points of Ψ are the solutions of

sinφ(2 cos θ − sin θ) = 0 cos θ cos φ+ 2 sin θ cos φ− sin φ = 0.

The first equation yields

• φ = 0 or φ = π, which replaced in the second equation yield θ = − arctan 1/2;

• θ = arctan 2, yielding φ = arctan
√
5.

In the original coordinates the first candidate solutions yield (x1, x2, x3) = (0, 0,±1), whereas
the second candidate solution give the optimal solution determined in part c).

Exercise 47 The methods of optimization can be used to solve simple geometric problems. Consider the
following list of problems. For each of them, formulate the problem as an optimisation problem, defining
the decision variables, the cost to be optimised, and the admissible set, and provide explicit solutions.
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a) Show that of all rectangles with a fixed positive area the one with the smallest perimeter is a square.

b) Show that of all rectangles with a fixed positive perimeter the one with the largest area is a square.

c) Find the rectangle of largest area that has its base on the x-axis and its other two vertices above
the x-axis and on the parabola y = 8− x2.

d) A piece of wire 10 meters long is cut into two pieces. One piece is bent to form a square, the other
piece is bent to form an equilateral triangle. How should the wire be cut so that the total area of
the square and of the triangle is a maximum or a minimum?

Solution 47

a) Let x and y be the height and length of the rectangle, then we want to minimize P = 2x + 2y
subject to xy = A, x > 0 and y > 0. Using the constraint on the area we have

y =
A

x
,

hence we need to minimize

P = 2x+ 2
A

x

subject to x > 0. Ignoring the positivity constraint on x, the stationary points of P are the solutions
of

0 =
dP

dx
= 2− 2

A

x2
,

i.e. x = ±
√
A. The only feasible solution is x =

√
A, which is a global minimizer, since P is convex

for x > 0, yielding y =
√
A, hence the rectangle with minimum perimeter is a square with perimeter

P = 4
√
A.

b) Let x and y be the height and length of the rectangle, then we want to maximize A = xy subject
to P = 2x+ 2y, x > 0 and y > 0. Using the constraint on the perimeter we have

A = x
P − 2x

2
=

1

2
Px− x2,

subject to x > 0. Ignoring the positivity constraint on x, the stationary points of A are the
solutions of 0 = dA

dx
= 1

2
P − 2x, i.e. x = 1

4
P . This solution is positive, hence feasible, and it is a

global maximizer since the function is concave, hence the rectangle with maximum area is a square

with area A = P2

16
.

c) The area of the rectangle is (note that to have two vertices on the given parabola, the two vertices
on the x-axis should be symmetric with respect to the y-axis)

A = 2xy = 2x(8− x2) = 16x− 2x3,

with 0 ≤ x ≤
√
8. The function A is continuous in the interval [0,

√
8], hence its global maximum

is either a stationary point or an extreme of the interval. Stationary points are the solutions of
0 = dA

dx
= 16− 6x2, i.e. x = ±

√
8/3. Note now that

x = 0 ⇒ A = 0, x =
√

8/3 ⇒ A =
64

3

√
2√
3
, x =

√
8 ⇒ A = 0,

hence the optimal solution is x =
√

8/3.

d) Let x be the length of the wire used for the square, and 10 − x the length used for the triangle.
Each side of the square is x/4, and its area is x2/16. Each side of the triangle is (10− x)/3, and its

area is
√

3
4

(10−x)2

32
. The total area enclosed is

A =
1

16
x2 +

√
3

36
(10− x)2,
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with x ∈ [0, 10]. Extrema, i.e. minimizers and maximizers are either stationary points in [0, 10] or
the extremes of the intervals. The function A has only a stationary point (since it is a quadratic

function), namely x = 80
√

3

18+8
√

3
≈ 4.35. Note now that

x = 0 ⇒ A =
100

√
3

36
≈ 4.81, x ≈ 4.35 ⇒ A ≈ 2.72, x = 10 ⇒ A = 6.25.

Hence, to have the minimum area, use 4.35m of wire for the square and the rest for the triangle, to
have maximum area use all the wire for the square!

Exercise 48 Consider the optimisation problem





min
x1,x2

−x1 + x2,

0 ≤ x1 ≤ 1,

x2 ≥ x2
1.

a) State first order necessary conditions of optimality for this constrained optimisation problem.

b) Using the conditions in part a) determine a candidate optimal solution x⋆ for the considered opti-
misation problem.

c) Transform the optimization problem into an optimization problem with equality constrains by
adding an auxiliary variable and disregarding, for simplicity, the constraints 0 ≤ x1 ≤ 1.

State first order necessary conditions of optimality for this transformed problem. Determine a
candidate optimal solution and show that it coincides with the solution determined in part b).

Solution 48

a) Define the Lagrangian

L(x1, x2, ρ1, ρ2, ρ3) = −x1 + x2 + ρ1(−x1) + ρ2(x1 − 1) + ρ3(x
2
1 − x2).

The first order necessary conditions of optimality are

0 =
∂L

∂x1
= −1− ρ1 + ρ2 + 2ρ3x1, 0 =

∂L

∂x2
= 1− ρ3,

−x1 ≤ 0, x1 − 1 ≤ 0, x2
1 − x2 ≤ 0, ρ1 ≥ 0, ρ2 ≥ 0, ρ3 ≥ 0,

ρ1x1 = 0, ρ2(x1 − 1) = 0, ρ3(x
2
1 − x2) = 0.

b) To begin with note that ρ3 has to be equal to one, hence x2
1 = x2. Consider now the following four

possibilities.

• ρ1 = 0, ρ2 = 0. This yields x1 = 1/2 and x2 = 1/4.

• ρ1 = 0, ρ2 > 0. This yields x1 = 1, x2 = 1, ρ2 = −1, which is not admissible.

• ρ1 > 0, ρ2 = 0. This yields x1 = 0, x2 = 0, ρ1 = −1, which is not admissible.

• ρ1 > 0, ρ2 > 0. This yields x1 = 0 and x1 = 1, which is meaningless.

In summary the only candidate solution is x1 = 1/2, x2 = 1/4, ρ1 = 0, ρ2 = 0, ρ3 = 1.

c) The inequality constraint x2
1 − x2 ≤ 0 can be rewritten as x2

1 − x2 + y2 = 0, where y is an auxiliary
variable. The problem is thus transformed into the problem





min
x1,x2,y

−x1 + x2,

x2
1 − x2 + y2 = 0.
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The Lagrangian for this problem is L = −x1 + x2 + λ(x2
1 − x2 + y2), and the necessary conditions

of optimality are

0 =
dL

dx1
= −1 + 2λx1, 0 =

dL

dx2
= 1− λ, 0 =

dL

dy
= 2λy, x2

1 − x2 + y2 = 0.

The only candidate solution is λ = 1, y = 0, x1 = 1/2, x2 = 1/4, which coincides with the one
determined in part b).

Exercise 49 Consider the optimisation problem





min
y1,y2

y1y2,

y21 + y22 ≤ 1.

a) Sketch in the (y1, y2)-plane the admissible set and the level lines of the the function y1y2. Hence,
using only graphical considerations determine the optimal solutions of the considered problem.

b) State first order necessary conditions of optimality for this constrained optimisation problem.

c) Using the conditions derived in part b) compute candidate optimal solutions. Show that the optimal
solutions derived graphically in part a) satisfy the necessary conditions of optimality.

d) The considered problem can be transformed into a linear programming problem using the change
of variable x1 = (y1 − y2)

2, x2 = (y1 + y2)
2.

i) Write the equations describing the transformed problem.
(Hint: note that the transformed problem has three inequality constraints.)

ii) Sketch in the (x1, x2)-plane the admissible set and the level lines of the cost function. Hence
determine the optimal solution of the transformed problem.

iii) Show how the optimal solution of the transformed problem can be used to determine the
optimal solutions of the original problem.

Solution 49

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y1

y2
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a) The admissible set is the shaded area in the figure above. The level lines are the solid (positive
values of f) and dotted (negative values of f) lines. The value of the function f increases in the
direction of the solid arrows, and decreases in the direction of the dotted arrows. The solution of
the problem is obtained for negative values of f at a point in which the level lines are tangent to
the circle y21 + y22 = 1. At such points y1 = −y2, hence the (global) minimizers are the point

P1 =

(√
2

2
,−

√
2

2

)
, P2 =

(
−
√
2

2
,

√
2

2

)
.

The value of the function at the optimal points is f(P1) = f(P2) = − 1
2
.

b) The Lagrangian of the problem is

L(y1, y2, ρ) = y1y2 + ρ(y21 + y22 − 1).

The first order necessary conditions of optimality are

0 =
∂L

∂y1
= y2 + 2ρy1, 0 =

∂L

∂y2
= y1 + 2ρy2,

y21 + y22 − 1 ≤ 0, ρ ≥ 0, ρ(y21 + y22 − 1) = 0.

c) Consider the two cases.

• ρ = 0. In this case y1 = y2 = 0.

• ρ > 0. Consider the equations

0 =
∂L

∂y1
=

∂L

∂y2
.

For any ρ > 0, y1 = y2 = 0 is a solution. In addition, if ρ = 1/2 there are infinitely many
solutions of the form (y1, y2) = (α,−α), where α is any real number. Note now that ρ > 0

implies, by the complementarity condition, y21+y
2
2−1 = 0. Hence, 2α2 = 1, yielding α = ±

√
2

2
.

In summary the candidate optimal solutions are

• (y1, y2) = (0, 0), with ρ ≥ 0.

• P1 and P2 with ρ = 1/2.

d) i) Note that x1 and x2 are non-negative by definition and that x1 = y21 − 2y1y2 + y22 , and
x2 = y21 + 2y1y2 + y22 . Hence

x2 − x1

4
= y1y2,

x1 + x2

2
= y21 + y22 .

As a result, in the variables x1 and x2 the problem is





min
x1,x2

x2 − x1

4
,

x1 ≥ 0,

x2 ≥ 0,

x1 + x2

2
≤ 1.

ii) The admissible set is the shaded area in the figure below. The level lines are the solid (positive
values of f) and dotted (negative values of f) lines. The value of the function f increases in
the direction of the solid arrow. The optimal solution is the point

P = (2, 0).



3.7. EXERCISES 137

iii) The point P in the (x1, x2)-variables is transformed into points in the (y1, y2)-variables solving
the equations

(y1 − y2)
2 = 2 (y1 + y2)

2 = 0.

These equations have the solutions

(y1, y2) =

(
±
√
2

2
,∓

√
2

2

)
,

which coincide with the points P1 and P2 determined in part c).
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4.1 Introduction

Given a function f : IRn → IR, global optimization methods aim at finding the global
minimum of f , i.e. a point x⋆ such that

f(x⋆) ≤ f(x)

for all x ∈ IRn. Among these methods it is possible to distinguish between deterministic
methods and probabilistic methods. In the following sections we provide a very brief
introductions to global minimization methods. It is worth noting that this is an active
area of research.

4.2 Deterministic methods

4.2.1 Methods for Lipschitz functions

Consider a function f : IRn → IR and suppose it is Lipschitz with constant L > 0, i.e.

|f(x1)− f(x2)| ≤ L‖x1 − x2‖, (4.1)

for all x1 ∈ IRn and x2 ∈ IRn. Note that equation (4.1) implies that

f(x) ≥ f(x0)− L‖x− x0‖ (4.2)

and that
f(x) ≤ f(x0) + L‖x− x0‖, (4.3)

for all x ∈ IRn and x0 ∈ IRn, see Figure 4.1 for a geometrical interpretation.

.

x0

f(x )+L||x-x ||0

f(x )-L||x-x ||0

Figure 4.1: Geometrical interpretation of the Lipschitz conditions (4.2) and (4.3).

Methods for Lipschitz functions are suitable to find a global solution of the problem

min
x

f(x),

with
x ∈ In = {x ∈ IRn | Ai ≤ xi ≤ Bi},
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and Ai < Bi given, under the assumptions that the set In contains a global minimizer of
f , the function f is Lipschitz in In and the Lipschitz constant L of f in In is known.
Under these assumptions it is possible to construct a very simple global minimization
algorithm, known as Schubert-Mladineo algorithm, as follows.

Step 0. Given x0 ∈ In and L̃ > L.

Step 1. Set k = 0.

Step 2. Let
Fk(x) = max

j=0,···,k
{f(xj)− L̃‖x− xj‖}

and compute xk+1 such that

Fk(xk+1) = min
x∈In

Fk(x).

Step 4. Set k = k + 1 and go to Step 2.

Remark. The functions Fk in Step 2 of the algorithm have a very special form. This can
be exploited to construct special algorithms solving the problem

min
x∈In

Fk(x)

in a finite number of iterations. ⋄

For Schubert-Mladineo algorithm it is possible to prove the following statement.

Theorem 24 Let f⋆ be the minimum value of f in In, let x
⋆ be such that f(x⋆) = f⋆ and

let F ⋆
k be the minima of the functions Fk in In. Let

Φ = {x ∈ In | f(x) = f⋆}

and let {xk} be the sequence generated by the algorithm. Then

• lim
k→∞

f(xk) = f⋆;

• the sequence {F ⋆
k } is non-decreasing and lim

k→∞
F ⋆
k = f⋆;

• lim
k→∞

inf
x∈Φ

‖x− xk‖ = 0;

• f(xk) ≥ f⋆ ≥ Fk−1(xk).

Schubert-Mladineo algorithm can be given, if x ∈ I1 ⊂ IR, a simple geometrical interpre-
tation, as shown in Figure 4.2.
The main advantage of Schubert-Mladineo algorithm is that it does not require the com-
putation of derivatives, hence it is also applicable to functions which are not everywhere
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f(x).

x =A1 x0

.

B

F (x)0

. f(x).

x =A1 x0

.

B

F (x)1

.
.

x2

Figure 4.2: Geometrical interpretation of Schubert-Mladineo algorithm.

differentiable. Moreover, unlike other global minimization algorithms, it is possible to
prove the convergence of the sequence {xk} to the global minimizer. Finally, it is possible
to define a simple stopping condition. For, note that if {xk} and {F ⋆

k } are the sequences
generated by the algorithm, then

f(xk) ≥ f⋆ ≥ F ⋆
k

and
f(xk) ≥ f⋆ ≥ f(xk) + rk,

where rk = F ⋆
k − f(xk) and limk→∞ rk = 0. As a result, if |rk| < ǫ, for some ǫ > 0, the

point xk gives a good approximation of the minimizer of f .
The main disadvantage of the algorithm is in the assumption that the set In contains
a global minimizer of f in IRn. Moreover, it may be difficult to compute the Lipschitz
constant L.

4.2.2 Methods of the trajectories

The basic idea of the global optimization methods known as methods of the trajectories is
to construct trajectories which go through all local minimizers. Once all local minimizers
are determined, the global minimizer can be easily isolated. These methods have been
originally proposed in the 70’s, but only recently, because of increased computer power
and of a reformulation using tools from differential geometry, they have proved to be
effective.
The simplest and first method of the trajectories is the so-called Branin method. Consider
the function f and assume∇f is continuous. Fix x0 and consider the differential equations

d

dt
∇f(x(t)) = ±∇f(x(t)) x(0) = x0. (4.4)

The solutions x(t) of such differential equations are such that

∇f(x(t)) = ∇f(x0)e
±t,

i.e. ∇f(x(t)) is parallel to ∇f(x0) for all t. Using these facts it is possible to describe
Branin algorithm.
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Step 0. Given x0.

Step 1. Compute the solution x(t) of the differential equation

d

dt
∇f(x(t)) = −∇f(x(t))

with x(0) = x0.

Step 2. The point x⋆ = lim
t→∞

x(t) is a stationary point of f , in fact lim
t→∞

∇f(x(t)) = 0.

Step 3. Consider a perturbation of the point x⋆, i.e. the point x̃ = x⋆ + ǫ and
compute the solution x(t) of the differential equation

d

dt
∇f(x(t)) = ∇f(x(t)).

Along this trajectory the gradient ∇f(x(t)) increases, hence the trajectory escapes
from the region of attraction of x0.

Step 4. Fix t̄ > 0 and assume that x(t̄) is sufficiently away from x0. Set x0 = x(t̄)
and go to Step 1.

Note that, if the perturbation ǫ and the time t̄ are properly selected, at each iteration the
algorithm generates a new stationary point of the function f .

Remark. If ∇2f is continuous then the differential equations (4.4) can be written as

ẋ(t) = ±
[
∇2f(x(t))

]−1
∇f(x(t)).

Therefore Branin method is a continuous equivalent of Newton method. Note however
that, as ∇2f(x(t)) may become singular, the above equation may be meaningless. In such
a case it is possible to modify Branin method using ideas borrowed from quasi-Newton
algorithms. ⋄

Branin method is very simple to implement. However, it has several disadvantages.

• It is not possible to prove convergence to the global minimizer.

• Even if the method yields the global minimizer, it is not possible to know how many
iterations are needed to reach such a global minimizer, i.e. there is no stopping
criterion.

• The trajectories x(t) are attracted by all stationary points of f , i.e. both minimizers
and maximizers.

• There is not a systematic way to select ǫ and t̄.
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x
0
*x1

Figure 4.3: Interpretation of the tunneling phase.

4.2.3 Tunneling methods

Tunneling methods have been proposed to find, in an efficient way, the global minimizer
of a function with several (possibly thousands) of local minimizers.

Tunneling algorithms are composed of a sequence of cycles, each having two phases. The
first phase is the minimization phase, i.e. a local minimizer is computed. The second phase
is the tunneling phase, i.e. a new starting point for the minimization phase is computed.

Minimization phase

Given a point x0, a local minimization, using any unconstrained optimization algorithm,
is performed. This minimization yields a local minimizer x⋆0.

Tunneling phase

A point x1 6= x⋆0 such that

f(x1) = f(x⋆0)

is determined. See Figure 4.3 for a geometrical interpretation.

In theory, tunneling methods generate a sequence {x⋆k} such that

f(x⋆k+1) ≤ f(x⋆k)
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xk
*

x

T(x,    )xk
*

f(x)

Figure 4.4: The functions f(x) and T (x, x⋆k).

and the sequence {x⋆k} converges to the global minimizer without passing through all
local minimizers. This is the most important advantage of tunneling methods. The main
disadvantage is the difficulty in performing the tunneling phase. In general, given a point
x⋆k a point x such that f(x) = f(x⋆k) is constructed searching for a zero of the function
(see Figure 4.4)

T (x, x⋆k) =
f(x)− f(x⋆k)

‖x− x⋆k‖
2λ

,

where the parameter λ > 0 has to be selected such that T (x⋆k, x
⋆
k) > 0.

Finally, it is worth noting that tunneling methods do not have a stopping criterion, i.e.
the algorithm attempts to perform the tunneling phase even if the point x⋆k is a global
minimizer.

4.3 Probabilistic methods

4.3.1 Methods using random directions

In this class of algorithms at each iteration a randomly selected direction, having unity
norm, is selected. The theoretical justification of such an algorithm rests on Gaviano
theorem. This states that the sequence {xk} generated using the iteration

xk+1 = xk + αkdk,
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where dk is randomly selected on a unity norm sphere and αk is such that

f(xk + αkdk) = min
α

f(xk + αdk),

is such that for any ǫ > 0 the probability that

f(xk)− f⋆ < ǫ,

where f⋆ is a global minimum of f , tends to one as k → ∞.

4.3.2 Multistart methods

Multistart methods are based on the fact that for given sets D and A, with measures
m(D) and m(A), and such that

1 ≥
m(A)

m(D)
= α ≥ 0,

the probability that, selecting N random points in D, one of these points is in A is

P (A,N) = 1− (1− α)N .

As a result
lim

N→∞
P (A,N) = 1.

Therefore, if A is a neighborhood of a global minimizer of f in D, we conclude that,
selecting a sufficiently large number of random points in D, one of these will (almost
surely) be close to the global minimizer. Using these considerations it is possible to
construct a whole class of algorithms, with similar properties, as detailed hereafter.

Step 0. Set f⋆ = ∞.

Step 1. Select a random point x0 ∈ IRn.

Step 2. If f(x0) > f⋆ go to Step 1.

Step 3. Perform a local minimization starting from x0 and yielding a point x⋆0. Set
f⋆ = f(x⋆0).

Step 4. Check if x⋆0 satisfies a stopping criterion. If not, go to Step 1.

4.3.3 Stopping criteria

The main disadvantage of probabilistic algorithms is the lack of a theoretically sound
stopping criterion. The most promising and used stopping criterion is based on the con-
struction of a probabilistic approximation P̃ (w) of the function

P (w) =
m({x ∈ D | f(x) ≤ w})

m(D)
.

Once the function P̃ (w) is known, a point x⋆ is regarded as a good approximation of the
global minimizer of f if

P̃ (f(x⋆)) ≤ ǫ ≪ 1.
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4.4 Exercises

Similarly to Sections 2.10 and 3.7, this section contains some exercises to illustrate how
global minimization methods can be used.

Exercise 50 Consider the discrete time system

xk+1 = axk

with xk ∈ IR, and output yk = xk. Consider also the auxiliary discrete time system

ξk+1 = αξk

with ξk ∈ IR, output ηk = ξk, and such that ξ0 = x0 6= 0.
Consider now the problem of determining the constant α such that the cost

J(α) =
1

2

(
e21 + e22 + · · · e2N

)

is minimized, where ei = yi − ηi and N ≥ 1.

a) Pose the above problem as an unconstrained optimization problem in the decision variable α,
parametrized by a and x0.

b) Assume N = 1. Show that J(a) = 0 and J(α) > 0 for all α 6= a. Hence show that the function
J(α) has a unique local minimizer which is also a global minimizer.

c) Suppose N = 2. Compute the stationary points of J(α). Note that the number of stationary points
is a function of the value of a. Hence, determine the local minimizers and the local maximizers of
the function J(α).

d) For N = 2 and a = 3/2, the function J(α) is as shown in the figure below. Let L = 12 be the
Lipschitz constant of J(α) for α ∈ [−2, 2]. Apply four steps of the Schubert-Mladineo algorithm
for the minimization of the function J(α) assuming that a global minimizer is in the set I1 = {α ∈
IR | − 2 ≤ α ≤ 2} and that the starting point of the algorithm is selected to be α = 2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0
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Solution 50

a) The problem can be formulated as

min
α∈IR

J(α) = min
α∈IR

1

2
(a− α)2x2

0 + (a2 − α2)2x2
0 + · · ·+ (aN − αN )2x2

0,

i.e. as an unconstrained optimization problem in the decision variable α and parameterized by a
and x0.
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b) For N = 1 one has J(α) = 1
2
(a − α)2x2

0. Hence, J(a) = 0 and J(α) > 0 for all α 6= a. This shows
(using the very definition of global minimum) that α = a is a global minimum.

c) If N = 2 one has J(α) = 1
2

(
(a− α)2 + (a2 − α2)2

)
x2
0. Hence dJ(α)

dα
= −(a− α)(2α2 + 2αa + 1)x2

0.
Therefore, the stationary points are

P1 = a, P2 = −a
2
+

√
a2 − 2

2
, P3 = −a

2
−

√
a2 − 2

2
.

We conclude that, if |a| <
√
2 there is only one stationary point, whereas if |a| ≥

√
2 there are three

stationary points. Computing second derivatives we have that P1 is always a local minimizer, and,
for |a| ≥

√
2, P2 is a local maximizer and P3 is a local minimizer.

d) A sketch of the application of the Schubert-Mladineo algorithm is shown at the end of the chapter.
Note that x4 is very close to the global minimizer.

Exercise 51 Consider the function
f = x4

1 − x1x2 + x4
2

and the problem of finding its global minimizer.

a) Write the formulae for the so-called Branin system, that is the system

ẋ = −[∇2f ]−1∇f,
for the considered function f .

b) Compute the equilibria of the Branin system determined in part a). Show that these equilibria
coincide with the stationary points of the function f . Show that f is radially unbounded. Hence
determine the global minimizer of f .

c) Consider the linearization of the Branin system, computed in part a), around its equilibrium at
x = 0. Show that this linearized system has two eigenvalues equal to −1, hence deduce that the
point x = 0 is locally attractive.

d) Write now the formulae for the modified Branin system

ẋ = −det(∇2f)[∇2f ]−1∇f,
for the function f above. Consider the linearization of the modified Branin system at x = 0 and
show that this equilibrium point is unstable.

e) Give reasons for the modified Branin method being preferable to the Branin method when deter-
mining a global minimizer for the considered function f .

Solution 51

a) The Branin system is

ẋ =

[
ẋ1

ẋ2

]
=

1

144x2
1x

2
2 − 1

[
−48x2

2x
3
1 + 8x3

2 + x1

8x3
1 + x2 − 48x2

1x
3
2

]
.

b) The equilibria of the Branin system are P1 = (0, 0), P2 = (1/2, 1/2) and P3 = (−1/2,−1/2). Note
now that these are also such that ∇f(Pi) = 0, for i = 1, 2, 3. Hence, the equilibria of Branin system
coincide with the stationary points of f . Note now that lim

‖x‖→∞
f(x) = +∞, hence f is radially

unbounded. Moreover f(P1) = 0 and f(P2) = f(P3) = −1/8. Hence the global minimum of f is
−1/8 and there are two global minimizers, P2 and P3.

c) The linearization of the Branin system around the point P1 is described by

ẋ =

[
−1 0
0 −1

]
x.

The linearized system has two eigenvalues equal to −1 and this shows that the point P1 is locally
attractive.
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d) The modified Branin system is

ẋ =

[
ẋ1

ẋ2

]
=

[
−48x2

2x
3
1 + 8x3

2 + x1

8x3
1 + x2 − 48x2

1x
3
2

]
.

Its linearization around P1 is described by

ẋ =

[
1 0
0 1

]
x,

and this shows that the point P1 is an unstable equilibrium of the modified Branin system.

e) The modified Branin system has the following advantages:

• the differential equations are defined for all x;

• the point P1, which is a local maximizer, is unstable therefore almost all trajectories of the
system are not be attracted by P1.
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