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Introduction

Integer programming is a branch of mathematical programming or optimization.

A general mathematical programming problem can be stated as

max f(x) x ∈ S ⊂ IRn, (1)

where f is called the objective function and it is a function defined on S, and S

is the so-called constraint set or admissible set.

Every x ∈ S is called a feasible solution. Moreover, if there is x� such that

∞ > f(x�) ≥ f(x)

for all x ∈ S, then x� is called an optimal solution to (1).

The goal of mathematical programming is to establish if an optimal solution
exists and to find one, or all, optimal solutions.
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Introduction (cont’d)

An integer programming problem is a mathematical programming problem in

which

S ⊂ Zn ⊂ IRn,

where Zn is the set of all n-dimensional vectors with integer components.

A mixed integer programming problem is a mathematical programming problem

in which at least one, but not all, of the components of x ∈ S are required to be

integer.

From an applied point of view, it is convenient to regard problem (1) as a model

of decision making in which S represents the set of admissible decisions and f

assigns a utility or profit to each x ∈ S.
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Introduction (cont’d)

The problem (1) is called a linear programming (LP) problem if

f = cx S = {x | Ax = b, x ≥ 0},

where c ∈ IR1×n, A ∈ IRm×n and b ∈ IRm×1. Moreover, the inequality x ≥ 0
has to be understood componentwise, i.e. xi ≥ 0 for all i.

Note that the set S is convex, i.e. if x ∈ S and y ∈ S then αx + (1 − α)y ∈ S

for all α ∈ [0, 1].

A set defined by linear constraints is called a polyhedron or a polytope.
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Introduction (cont’d)

An integer linear programming (ILP) problem is defined as

max cx

Ax = b

x ≥ 0 integer.

(2)

All entries of c, A and b are assumed integer. (This is equivalent to assuming

that they are rational, since multiplication of the objective function by a positive

number or of a constraint by any number does not alter the problem.)

Equations (2) provides one possible formulation of an ILP problem.

Alternatively, we may have minimization problems or problems with inequality
constraints.
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Introduction (cont’d)

Minimization problems can be rewritten as maximization problems noting that

−min(−f(x)) = max f(x).

Inequality constraints can be converted into equality constraints by adding

auxiliary variables. For example

ax ≤ b ⇔ ax + s = b s ≥ 0,

and

ax ≥ b ⇔ ax − t = b t ≥ 0.

The variables s and t are known as slack or surplus variables.
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Introduction (cont’d)

The LP problem obtained by dropping the integrality constraint from the ILP

problem (2) will be referred to as the corresponding LP problem.

In general, the problem

P1 : max f(x) x ∈ S1

is said to be a relaxation of the problem

P2 : max f(x) x ∈ S2

if

S1 ⊇ S2.

Similarly, P2 is said to be a restriction of P1.
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Introduction (cont’d)

The concepts of relaxation and restriction are often used in mathematical
programming. Note that if x◦ is an optimal solution to P1 and x� is an optimal
solution to P2 then

f(x◦) ≥ f(x�).

Moreover, if x◦ ∈ S2 then x◦ is an optimal solution to P2.

An important special case of the ILP problem is the so-called binary ILP
problem described by

max cx

Ax = b

x ≥ 0 binary.

(3)

(x binary means xi = 0 or xi = 1 for all i.)
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Examples

Capital budgeting. A firm has n projects to undertake but, because of budget

restrictions, not all can be selected.

Project j has a present value of cj , and requires an investment of aij in the time

period i, where i = 1, · · · , m. The capital available in time period i is bi.

The problem of maximizing the total present value subject to the budget

constraints can be written as

max
∑m

j=1 cjxj∑n
j=1 aijxj ≤ bi, i = 1, · · · , m

xj = 0, 1, j = 1, · · · , n
where xj = 1 if the project j is selected and xj = 0 if the project j is not

selected.
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Examples (cont’d)

Dichotomies. Consider the problem max f(x) with x ∈ S subject to

g(x) ≥ 0 or h(x) ≥ 0. (4)

This is in general a difficult problem. However, the dichotomy (4) is equivalent
to

g(x) ≥ δg

h(x) ≥ (1 − δ)h

δ binary,

where g and h are known finite lower bounds on g and h. In fact,

δ = 0 ⇒ g(x) ≥ 0 and h(x) ≥ h

δ = 1 ⇒ g(x) ≥ g and h(x) ≥ 0.
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Examples (cont’d)

The fixed charge problem. In general the cost of an activity is a nonlinear
function of the activity level x, given by

f(x) =
{

d + cx if x > 0
0 if x = 0.

If d > 0 and f is to be minimized, we have the problem

min cx + dy

x ≥ 0

x − uy ≤ 0

y = 0, 1,

where y is an indicator of whether or not the activity is undertaken, and u is a
known, finite, upper bound for x. The second constraint guarantees that x > 0
implies y = 1.
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Examples (cont’d)

The plant location problem. Consider n customers, the j-th one requiring bj

units of a commodity. There are m locations in which plants may operate to

satisfy the demands.

There is a fixed charge of di for opening plant i, and the unity cost for supplying

customer j from plant i is cij . The capacity of plant i is hi.

The problem is

min
m∑

i=1

⎛
⎝ n∑

j=1

cijxij + diyi

⎞
⎠

∑m
j=1 xij = bi∑n
j=1 xij − hiyi ≤ 0

xij ≥ 0, yi = 0, 1.
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Examples (cont’d)

The knapsack problem. Suppose n different types of scientific equipment are

considered for inclusion on a space vehicle.

Let cj be the scientific value per unit and aj the weight per unit of the j-th type.

If the total weight limitation is b, the problem of maximizing the total value of

the equipment taken is

max
n∑

j=1

cjxj

∑n
j=1 ajxj ≤ b

xj ≥ 0, integer,

where xj is the number of units of the j-th type included.
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Methods for solving ILP

ILP problems can be solved using two basic approaches: enumeration and

cutting planes.

To introduce these methods consider the simple problem.

max 2x1 + x2

x1 + x2 ≤ 5

−x1 + x2 ≤ 0

6x1 + 2x2 ≤ 21

xi ≥ 0 integer.
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Methods for solving ILP (cont’d)

The feasible region is the shaded area in the figure.
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The optimum of the relaxed (non-integer) problem is located at (11
4 , 9

4 ) with a
value of the objective function equal to 73

4 .
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Methods for solving ILP (cont’d)

Enumeration. Without plotting the admissible set it is possible to obtain an

upper bound on the number of feasible points.

The first constraint, together with nonnegativity of the xi, implies 0 ≤ xi ≤ 5.

The third constraint implies 0 ≤ x1 ≤ 3.

This limits the feasible points to 24 (16 are infeasible, and 8 are feasible).

By total enumeration one could find the optimal point (x1, x2) = (3, 1).
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Methods for solving ILP (cont’d)

With some work one can reduce the number of candidate optimal solutions.

Adding the first and second constraints yields 2x2 ≤ 5, which implies x2 ≤ 2,

and reduces the upper bound on the number of feasible points to 12.

Note that the feasible point (3, 0) yields a value of the objective function equal

to 6. Thus every optimal solution should be such that 2x1 + x2 ≥ 6.

The above, together with x2 ≤ 2 yields 2x1 ≥ 4.

In summary, we have reduced the number of candidate optimal points to 6:

(2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2).
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Methods for solving ILP (cont’d)

Of these points, (2, 0) and (2, 1) yields a value of the objective smaller than 6.

Moreover, since the non-integer optimum of the objective is 73
4 , it follows that

2x1 + x2 ≤ 7, which rules out (3, 2).

The candidates for optimality have been reduced to

(2, 2) (3, 0) (3, 1),

from which, by direct computation, one obtains the optimum (3, 1).

The main idea of enumeration methods is thus to explore, explicitly or

implicitly, a set of integer points containing the set of admissible points.
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Methods for solving ILP (cont’d)

Cutting planes. The idea of cutting planes is to generate a sequence of linear

inequalities that cut out part of the feasible region of the corresponding LP

problem, while leaving the feasible region of the ILP problem unchanged.

If a sufficient number of cutting planes is generated, the ILP problem has the

same solution as the corresponding LP problem.
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Methods for solving ILP (cont’d)

Suppose the set S = {x | Ax = b, x ≥ 0 integer} of feasible solutions of an
ILP problem is bounded, hence contains a finite number of points.

Define the convex hull of S, namely

S+ = {y | y =
∑

αixi, α ≥ 0,
∑

α = 1, xi ∈ S}.

Then
S ⊆ S+ ⊆ T = {x | Ax = b, x ≥ 0}

and the optimal solution of

max cx x ∈ S

can be computed solving

max cx x ∈ S+.
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Methods for solving ILP (cont’d)

The computation of S+ is in general very difficult, and involves several cuts.

In practice, a small number of good cuts is enough to generate a LP problem

with an integer solution, which coincides with the solution of the given ILP

problem.

For the considered example, from the optimal solution of the corresponding LP

problem one has

2x1 + x2 ≤ 7
3
4
⇒ 2x1 + x2 ≤ 7.

Moreover

2x1 + x2 ≤ 7 and x2 ≥ 0 ⇒ 2x1 ≤ 7 ⇒ x1 ≤ 3.
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Methods for solving ILP (cont’d)

In summary, the problems

max 2x1 + x2

x1 + x2 ≤ 5 − x1 + x2 ≤ 0 6x1 + 2x2 ≤ 21

xi ≥ 0 integer

and

max 2x1 + x2

x1 + x2 ≤ 5 −x1 + x2 ≤ 0 6x1 + 2x2 ≤ 21

x1 ≤ 3 2x1 + x2 ≤ 7

xi ≥ 0

have the same optimal solution (the point (3, 1)) which is integer.
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Methods for solving ILP (cont’d)
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Optimization on graphs

A significant class of LP and ILP problems is associated with so-called graphs.

Let

V = {1, · · · , m}
be a finite set and let Q be the set of all ordered pairs of elements of V , i.e.

Q = {(i, j) | i ∈ V, j ∈ V }.

The pair

G = (V, E)

with E ⊆ Q is called a directed graph.

The elements of V are called vertices, those of E are called directed edges.
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Optimization on graphs (cont’d)

1 2

3

45

(1,2)

(2,1)

(1,5)

(4,5)

(5,4)

(5,2)

(2,3)

(3,4)

V = {1, 2, 3, 4, 5}
Q = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), · · · , (4, 5)}

E = {(1, 2), (1, 5), (2, 1), (2, 3), (3, 4), (4, 5), (5, 2), (5, 4)}
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Optimization on graphs (cont’d)

To formulate optimization problems on graphs it is necessary to introduce the

following definitions.

Consider a directed graph. Let V be partitioned as

V1 (origins) V2 (intermediate points) V3 (destinations).

For each i ∈ V let

V (i) = {j | (i, j) ∈ E} V ′(i) = {j | (j, i) ∈ E}.

V (i) denotes the set of vertices j connected to vertex i by an outgoing path.

V ′(i) denotes the set of vertices j connected to vertex i by an incoming path.
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Optimization on graphs (cont’d)

The assignment problem. Consider a directed graph E.

Assume cardV1 = cardV3 and V2 = ∅.

Assume that each vertex i ∈ V1 is connected to all vertices in V3.

Consider the problem of minimizing the cost of assigning each vertex of V1 to a

vertex of V3.

This problem arises, for example, if one wishes to assign m men to m different

jobs.
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Optimization on graphs (cont’d)

The assignment problem (cont’d). The problem can be formulated as

min
∑
i∈V1

∑
j∈V (i)

cijxij

∑
j∈V (i)

xij = 1, i ∈ V1

∑
i∈V ′(j)

xij = 1, j ∈ V3

xij binary,

where cij is the cost of assigning i to j and xij = 1 if i is assigned to j.

Interestingly, the corresponding LP problem has an integer optimal solution.
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Optimization on graphs (cont’d)

The shortest path problem. Consider a directed graph E.

Assume V1 = {1} and V3 = {m}.

Let cij be the length of edge (i, j) and define the length of a path as the sum of

the lengths of its edges.

Assume all cycles have nonnegative length.

The goal is to find a path from 1 to m of minimal length.
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Optimization on graphs (cont’d)

The shortest path problem (cont’d). The problem can be formulated as

min
∑
i∈V

∑
j∈V (i)

cijxij

∑
j∈V (1)

x1j −
∑

j∈V ′(1)

xj1 ≤ 1

∑
j∈V (i)

xij −
∑

j∈V ′(i)

xji = 0, i ∈ V2

∑
j∈V (m)

xmj −
∑

j∈V ′(m)

xjm ≤ −1

0 ≤ xij ≤ 1 integer.
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LP problems with integer solutions

Consider an LP problem with cost cx and constraints

Ax = b x ≥ 0,

where c, A and b have integer entries.

Suppose that the columns of A are permuted so that

A = [B, N ]

where B ∈ IRm×m is nonsingular, i.e. detB �= 0.

The matrix B is called basis matrix for the LP problem.

There are at most

⎛
⎝ n

m

⎞
⎠ different basis matrices.
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LP problems with integer solutions (cont’d)

Let x = (xB , xN ), where xB is the vector of basic variables associated with the
columns of B and xn is the vector of non-basic variables associated with the
columns of N .

Then Ax = b can be rewritten as

BxB + NxN = b

and, since B is invertible

xB = B−1b − B−1NxN .

The particular selection
(xB, xN ) = (B−1b, 0)

is called a basic solution and if xB ≥ 0 it is called a basic feasible solution.
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LP problems with integer solutions (cont’d)

Theorem
If an LP problem has an optimal solution, it has a basic optimal solution.

In the context of integer programming, one may wonder when an LP problem

with integer data has an optimal solution which is integer.

A sufficient condition for a basic solution to be integer is that B−1 is an integer

matrix, to this end we introduce the notion of unimodularity.

A square integer matrix B is called unimodular if | detB| = 1.

An integer matrix A ∈ IRm×n is totally unimodular if every square nonsingular

sub-matrix of A is unimodular.
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LP problems with integer solutions (cont’d)

Theorem
Consider the problem max cx with constraints Ax = b and x ≥ 0. If A is totally

unimodular then every basic solution of the problem is integer.

Theorem
Let A be an integer matrix. Then the following statements are equivalent.

• A is totally unimodular.

• The extreme points (if any) of {x | Ax ≤ b, x ≥ 0} are integer for any

integer b.
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LP problems with integer solutions (cont’d)

Theorem
An integer matrix A with aij = 0, 1,−1 for all i and j is totally unimodular if

• no more than two nonzero elements appear in each column;

• the rows can be partitioned into two subsets Q1 and Q2 such that

– if a column contains two nonzero elements with the same sign, one
element is in each of the subsets;

– if a column contains two nonzero elements of opposite sign, both
elements are in the same subset.

Theorem
The constraint matrices for the assignment and shortest path problems are totally
unimodular.
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Summary

We have discussed and formulated integer programming problems.

We have outlined two procedures for the solutions of such problems.

We have considered optimization problems on graphs.

We have discussed the notion of unimodularity and its connection with

optimization problems on graphs.


