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/ | ntroduction \

Integer programming is a branch of mathematical programming or optimization.

A general mathematical programming problem can be stated as
max f(x) reSCIR", (1)

where f is called the objective function and it isafunction defined on S, and S
IS the so-called constraint set or admissible set.

Every x € S iscalled afeasible solution. Moreover, if thereis z* such that

oo > f(x™) = f(z)

foral x € S, then > is called an optimal solution to (1).

The goal of mathematical programming isto establish if an optimal solution
exists and to find one, or all, optimal solutions.
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/ Introduction (cont’d) \

An integer programming problem is a mathematical programming problem in
which

SczZ" cCIR",
where Z™ isthe set of all n-dimensional vectors with integer components.
A mixed integer programming problem is a mathematical programming problem

In which at least one, but not all, of the components of x € .S arerequired to be
Integer.

From an applied point of view, it is convenient to regard problem (1) as a model
of decision making in which S’ represents the set of admissible decisions and f
assigns a utility or profittoeach = € S.
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/ Introduction (cont’d) \

The problem (1) iscalled alinear programming (LP) problem if

f=cx S={x|Ax =b,z > 0},

wherec € RY™™"™, A € IR™*"™ and b € IR™*'. Moreover, theinequality z > 0
has to be understood componentwise, i.e. x; > 0 for all 7.

Note that the set S isconvex, i.eif xr € Sandy € Sthenaz + (1 —a)y € S
fordl a € [0, 1].

A set defined by linear constraints is called a polyhedron or a polytope.
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/ Introduction (cont’d) \

An integer linear programming (ILP) problem is defined as

max cx
Ar = b (2)

x > 0 integer.

All entries of ¢, A and b are assumed integer. (Thisis eguivalent to assuming
that they are rational, since multiplication of the objective function by a positive
number or of a constraint by any number does not alter the problem.)

Equations (2) provides one possible formulation of an ILP problem.
Alternatively, we may have minimization problems or problems with inequality
constraints.
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/ Introduction (cont’d) \

Minimization problems can be rewritten as maximization problems noting that

—min(—f(z)) = max f(x).

Inequality constraints can be converted into equality constraints by adding
auxiliary variables. For example

ar<b & ar+s=0b s>0,

and
ar>b << axr—t=0b t>0.

The variables s and ¢ are known as slack or surplus variables.
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/ Introduction (cont’d) \

The LP problem obtained by dropping the integrality constraint from the ILP
problem (2) will be referred to as the corresponding LP problem.

In general, the problem
Py : max f(x) r €5
IS said to be arelaxation of the problem
Ps : max f(x) r €59
if
S1 2 5s.

Similarly, P, issaid to be arestriction of P;.
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/ Introduction (cont’d) \

The concepts of relaxation and restriction are often used in mathematical
programming. Note that if 2° isan optimal solutionto P; and x* is an optimal
solution to P, then

fa®) = fz%).

Moreover, if x° € S, then x° isan optimal solution to P;.

An important special case of the ILP problem isthe so-called binary ILP
problem described by

max cx
Ar = b 3)
x > 0 binary.

(x binary meansx; =0 or z; = 1 for al z.)
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/ Examples \

Capital budgeting. A firm hasn projects to undertake but, because of budget
restrictions, not all can be selected.

Project j has apresent value of ¢;, and requires an investment of a;; in thetime
period i, where: =1, - - -, m. The capital available in time period 7 isb;.

The problem of maximizing the total present value subject to the budget
constraints can be written as

where x; = 1 if the project j isselected and x; = 0 if the project j is not
sel ected.
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/ Examples (cont’d) \

Dichotomies. Consider the problem max f(z) with z € S subject to

g(x) >0 or h(x) > 0. (4)

Thisisin general adifficult problem. However, the dichotomy (4) is equivalent
to

g
hz) > (1—96)h

0 binary,

2
\ep
\Y

where g and h are known finite lower bounds on ¢ and h. In fact,
0=0=g(x) >0 and h(x) > h

d=1=g(x) >g and h(z) > 0.
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/ Examples (cont’'d)

The fixed charge problem. In general the cost of an activity is anonlinear
function of the activity level x, given by
d+cx 1fx>0

f@):{o if 2 = 0.

If d > 0 and f isto be minimized, we have the problem

min cx + dy
x > 0
r—uy < 0
y = 0,1,

where y is an indicator of whether or not the activity isundertaken, and « isa
known, finite, upper bound for x. The second constraint guarantees that x > 0
impliesy = 1.
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/ Examples (cont’d) \

The plant location problem. Consider n customers, the j-th one requiring b;
units of acommaodity. There are m locations in which plants may operate to
satisfy the demands.

There isafixed charge of d; for opening plant ¢, and the unity cost for supplying
customer j from plant i is¢;;. The capacity of plant i Is h;.

The problem is

m n
min ;J ;Jcija:ij —|— dzyz
1—=1

j=1

D i1 Tij = b
> iy Tij — hiyi <0
LIZ‘Z'j Z O, Y; — O, 1.




/ Examples (cont’d) \

The knapsack problem. Suppose » different types of scientific equipment are
considered for inclusion on a space vehicle.

Let c; be the scientific value per unit and a; the weight per unit of the j-th type.

If the total weight limitation is b, the problem of maximizing the total value of
the equipment taken is

n
Imax E ijj
j=1

Z?:l CLjin S b

x; >0, Integer,

where z; Isthe number of units of the j-th type included.
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/ Methods for solving ILP \

|LP problems can be solved using two basic approaches. enumeration and
cutting planes.

To introduce these methods consider the simple problem.

max 2r1 + xo
r1+x2 <95
—x1 + 22 <0
61 + 220 < 21
x; > 0 1integer.




/ Methods for solving ILP (cont’d) \

The feasible region is the shaded area in the figure.
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The optimum of the relaxed (non-integer) problem islocated at (-

value of the objective function equal to 73.
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/ Methods for solving ILP (cont’d) \

Enumeration. Without plotting the admissible set it is possible to obtain an
upper bound on the number of feasible points.

Thefirst constraint, together with nonnegativity of the x;, implies0 < z; < 5.
The third constraint implies(0 < x; < 3.
Thislimitsthe feasible pointsto 24 (16 are infeasible, and 8 are feasible).

By total enumeration one could find the optimal point (z1,z2) = (3, 1).
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/ Methods for solving ILP (cont’d) \

With some work one can reduce the number of candidate optimal solutions.

Adding the first and second constraints yields 2z, < 5, which implies z, < 2,
and reduces the upper bound on the number of feasible pointsto 12.

Note that the feasible point (3, 0) yields a value of the objective function equal
to 6. Thus every optimal solution should be such that 2z + x5 > 6.

The above, together with x5 < 2 yields2x, > 4.

In summary, we have reduced the number of candidate optimal pointsto 6:

(2,0) (2,1) (2,2) (3,0) (3,1) (3,2).
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/ Methods for solving ILP (cont’d)

Of these points, (2,0) and (2, 1) yields avalue of the objective smaller than 6.

Moreover, since the non-integer optimum of the objectiveis 7 %, it follows that
221 + xo < 7, which rules out (3, 2).

The candidates for optimality have been reduced to
(2,2) (3,0) (3,1),
from which, by direct computation, one obtains the optimum (3, 1).

The main idea of enumeration methods is thus to explore, explicitly or
implicitly, aset of integer points containing the set of admissible points.

-
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/ Methods for solving ILP (cont’d)

Cutting planes. The idea of cutting planes is to generate a sequence of linear
Inequalities that cut out part of the feasible region of the corresponding LP
problem, while leaving the feasible region of the |LP problem unchanged.

If a sufficient number of cutting planes is generated, the ILP problem has the
same solution as the corresponding LP problem.
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/ Methods for solving ILP (cont’d)

Supposetheset S = {x | Axr = b,x > 0 integer} of feasible solutions of an
|LP problem is bounded, hence contains afinite number of points.

Define the convex hull of S, namely
S+:{y\y:Zaiaﬁi, a >0, Zazl,aﬁi c S}

Then
SCSTCT={x| Az =b,x >0}

and the optimal solution of
max cx xreS
can be computed solving

max cx re ST,
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/ Methods for solving ILP (cont’d) \

The computation of ST isin general very difficult, and involves several cuts.

In practice, asmall number of good cuts is enough to generate a LP problem
with an integer solution, which coincides with the solution of the given ILP
problem.

For the considered example, from the optimal solution of the corresponding LP
problem one has

3
211 —|—£U2§7Z:>2£U1—|—£U2§7

M oreover
201 + 2o < T7andxo >0 =221 <7 =21 < 3.




/ Methods for solving ILP (cont’d)

In summary, the problems

max 2xr1 + o
r1+x2 <9 —x1+22 <0 621 + 229 < 21
x; > 0 integer

and

max 2x1 + To

x1+22 <D —21 + 22 <0 621 + 229 < 21
r1 <3 201 + 19 < 7

have the same optimal solution (the point (3, 1)) which isinteger.
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/ Optimization on graphs \

A significant class of LP and ILP problems is associated with so-called graphs.

L et
V={l,---,m}

be afinite set and let () be the set of all ordered pairs of elementsof V, i.e.
Q={GJ)]ieV,jeV}

The pair
G=(V,E)

with £ C () iscalled adirected graph.

The elements of V' are called vertices, those of E are called directed edges.

\_ /




(15 , /@
(3.4)
(5.4)
>(4)

(4.5)

V ={1,2,3,4,5}

Q — {<17 2)? (17 3)? <174>7 (17 5)? (27 1)? (27 3)? (274>7 (27 5)7 T (47 5>}
E=1{(1,2),(1,5),(2,1),(2,3),(3,4),(4,5),(5,2), (5,4)}



/ Optimization on graphs (cont’d)

To formulate optimization problems on graphs it is necessary to introduce the
following definitions,

Consider adirected graph. Let V' be partitioned as

V1 (origins) V5 (intermediate points) V3 (destinations).

Foreach: € V let
V(i)={jl(j)eLt V(@)={jl(i)eEL}
V' (4) denotes the set of vertices j connected to vertex ¢ by an outgoing path.

V(i) denotes the set of vertices j connected to vertex ¢ by an incoming path.
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/ Optimization on graphs (cont’d) \

The assignment problem. Consider adirected graph E.

Assume cardV; = cardVs; and V5 = ().
Assume that each vertex i € V; isconnected to all verticesin V5.

Consider the problem of minimizing the cost of assigning each vertex of 14 to a
vertex of V3.

This problem arises, for example, if one wishesto assign m men to m different
jobs.
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/ Optimization on graphs (cont’d)

The assignment problem (cont’d). The problem can be formulated as

1111 ;J ;J CijLij

1€V jeV (i)

L binary ,

where c;; isthe cost of assigning < to j and x;; = 1 if 7 isassigned to j.

Interestingly, the corresponding LP problem has an integer optimal solution.
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/ Optimization on graphs (cont’d) \

The shortest path problem. Consider adirected graph E.

AssumeV; = {1} and V3 = {m}.

Let c;; be the length of edge (7, j) and define the length of a path as the sum of
the lengths of its edges.

Assume all cycles have nonnegative length.

The goal isto find a path from 1 to m of minimal length.
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/ Optimization on graphs (cont’d)

The shortest path problem (cont’d). The problem can be formulated as

min ; ; CijLij

zGV jGV(z
Z xT1j — Z xj1 <1
jeV(1) JjeEV’(1)
wa Z x;; =0, 1€ Vo
JEV(3) JeEV! (1)
DT S
JjeV(m) JjeV!(m)

0 <uz;; <1 integer.




/ L P problems with integer solutions \

Consider an LP problem with cost cxz and constraints
Axr =b x >0,
where ¢, A and b have integer entries.
Suppose that the columns of A are permuted so that
A = [B, N]

where B € IR™*™ isnonsingular, i.e. det B # 0.

The matrix B iscalled basis matrix for the LP problem.

m
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There are at most ( " ) different basis matrices.




/ L P problems with integer solutions (cont’d) \

Let x = (xp,zN), Where x g isthe vector of basic variables associated with the
columns of B and z,, i1sthe vector of non-basic variables associated with the
columns of V.

Then Az = b can be rewritten as
Bxg+ Nxzy =0
and, since B isinvertible
rp=B"'b— B 'Nzy.

The particular selection
(zp,xNn) = (B~'b,0)

Iscalled abasic solutionand if zp > 0 it iscaled abasic feasible solution.
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/ L P problems with integer solutions (cont’d) \

Theorem
If an LP problem has an optimal solution, it has a basic optimal solution.

In the context of integer programming, one may wonder when an LP problem
with integer data has an optimal solution which is integer.

A sufficient condition for abasic solution to be integer isthat B~ is an integer
matrix, to this end we introduce the notion of unimodularity.

A sguare integer matrix B iscaled unimodular if | det B| = 1.

Aninteger matrix A € IR™*"™ istotally unimodular if every square nonsingular
sub-matrix of A isunimodular.
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/ L P problems with integer solutions (cont’d) \

Theorem

Consider the problem max cx with constraints Az = band = > 0. If A istotally
unimodular then every basic solution of the problem is integer.

Theorem
Let A be an integer matrix. Then the following statements are equival ent.

e A istotally unimodular.

e The extreme points (if any) of {z | Az < b, x > 0} areinteger for any
Integer b.
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/ L P problems with integer solutions (cont’d) \

Theorem
An integer matrix A witha;; = 0,1, —1 for al 7 and j istotally unimodular if

e NO mMore than two nonzero elements appear in each column;

e the rows can be partitioned into two subsets (); and (), such that

— If acolumn contains two nonzero elements with the same sign, one
element isin each of the subsets,

— If acolumn contains two nonzero elements of opposite sign, both
elements are in the same subset.

Theorem
The constraint matrices for the assignment and shortest path problems are totally
unimodular.
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/ Summary

We have discussed and formulated integer programming problems.
We have outlined two procedures for the solutions of such problems.
We have considered optimization problems on graphs.

We have discussed the notion of unimodularity and its connection with
optimization problems on graphs.




