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Role of networks N

= Behind each complex system there is a network, that
defines the interactions between the component.
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Facebook

The “Social Graph” behind Facebook

Keith Shepherd's "Sunday Best". http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/
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Power network and outages

Montreal

Ottawa

Detroit

Cleveland

-

: B :
/ € o ’ Long Island
o e s .

Columbus

(@ August 14, 2003: 9:29pm EDT August 15, 2003: 9:14pm EDT
O 20 hours before 7 hours after
o
g
4



Topics Covered

N

i |

= Definitions

= Representation

= Sub-graphs

= Connectivity

" Trees and MST

= Hamilton and Euler definitions
= Shortest Path

= Planar Graphs

= Graph Coloring
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Definitions - Graph xa\ “

A generalization of the simple concept of a set of dots,
links, edges or arcs.

Representation: Graph G =(V, E) consists of a set of vertices
denoted by V, or by V(G) and set of edges E, or E(G)

K@LOC



Definitions — Edge Type ﬁ%\E}‘«.“Q

A‘\

= Q)

Directed: Ordered pair of vertices. Represented as (u, v) directed
from vertex u to v.

Undirected: Unordered pair of vertices. Represented as {u, v}.
Disregards any sense of direction and treats both end vertices
interchangeably.

@ ©
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Definitions — Edge Type ng%.‘!

= Loop: A loop is an edge whose endpoints are equal i.e., an edge
joining a vertex to it self is called a loop. Represented as {u, u} = {u}

(W

= Multiple Edges: Two or more edges joining the same pair of vertices.

N

W ©
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Definitions — Graph Type ﬁ%\%“!

A‘\

= \/7/ )

Simple (Undirected) Graph: consists of V, a nonempty set of vertices,
and E, a set of unordered pairs of distinct elements of V called edges
(undirected)

Representation Example: G(V, E), V = {u, v, w}, E = {{u, v}, {v, w}, {u,

wi}
@ ©
N
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Definitions — Graph Type ﬁ%\%“!

A‘\

= \/7/ )

Multigraph: G(V,E), consists of set of vertices V, set of Edges E and a
function f from E to {{u, v}| u, v V, u # v}. The edges el and e2 are
called multiple or parallel edges if f (el) = f (e2).

Representation Example: V ={u, v, w}, E ={e,, e,, e,}

W
e = (w)
o o
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Definitions — Graph Type ﬁ%\%“!

o

Pseudograph: G(V,E), consists of set of vertices V, set of Edges E and |
a function F from E to {{u, v}| u, v I V}. Loops allowed in such a graph.

Representation Example: V ={u, v, w}, E ={e,, e,, e, e,}

(W
e e, wW— e,
& -
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Definitions — Graph Type ﬁ%\%“!

A‘\

= \/7/ )

Directed Graph: G(V, E), set of vertices V, and set of Edges E, that are
ordered pair of elements of V (directed edges)

Representation Example: G(V, E), V ={u, v, w}, E = {(u, v), (v, w), (w,

u)}
Ny

K@LOC
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Definitions — Graph Type ﬁ%\%“!

Directed Multigraph: G(V,E), consists of set of vertices V, set of Edges E |
and a function f from E to {{u, v}| u, v V}. The edges el and e2 are
multiple edges if f(el) = f(e2)

Representation Example: V ={u, v, w}, E ={e,, e,, e;, e,}

K@LOC
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Definitions — Graph Type

Multiple Loops Allowed? Example
Edges
Allowed?
Simple Graph | undirected No No Mobile phone
calls
Multigraph undirected Yes No Collaboration
network
Pseudograph |undirected Yes Yes Facebook
Friendship links
Directed directed No Yes Protein
W Graph Interactions
29 Directed directed Yes Yes WWW
% Multigraph
A4
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Terminology — Undirected graphs Xa\ “

= uandv are adjacent if {u, v} is an edge, e is called incident with u
and v. u and v are called endpoints of {u, v}

= Degree of Vertex (deg (v)): the number of edges incident on a vertex.
A loop contributes twice to the degree (why?).

= Pendant Vertex: deg (v) =1
= |solated Vertex: deg (k) =0

Representation Example: For V ={u, v, w}, E ={{u, w}, {u, v} }, deg (u) =
2,deg(v)=1,deg(w)=1, deg (k) =0, w and v are pendant, k is

isolated
@@ g
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Terminology — Directed graphs Kfa\ ‘>

" For the edge (u, v), u is adjacent to v OR v is adjacent from u, u -
Initial vertex, v — Terminal vertex

" |n-degree (deg (u)): number of edges for which u is terminal vertex
= Qut-degree (deg* (u)): number of edges for which u is initial vertex

Representation Example: For V={u, v, w}, E={(u, w), (v, w), (u, v) },
deg (u) =0, deg* (u) =2, deg (v) =1,

deg*(v) =1, and deg (w) =2, deg*(u) =0

N\
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Theorems: Undirected Graphs \ra\ 6‘

Theorem 1

The Handshaking theorem:

2e = deg(v)
veV

Every edge connects 2 vertices

KaLOC



Theorems: Undirected Graphs ;

Theorem 2:

An undirected graph has even number of vertices with odd degree

Proof V1is the set of even degree verticesand V2 refers to odd degree vertices

2e =) deg(v)= > deg(u)+ > deg(v)

veV ueVi veV2

= deg (v)isevenforveVy,
= The first termin the right hand side of the last inequality is even.
= The sum of the last two terms on the right hand side of

the last inequality is even since sumis 2e.

Hence second term is also even

= second term Z deg(u) =even

veV2

K@lOC



Theorems: directed Graphs

= Theorem3: > deg*(u)= D, deg-(u)=|E|

K@1OC



Simple graphs — special cases \ra\ 6‘

= Complete graph: K, is the simple graph that contains exactly one
edge between each pair of distinct vertices.

Representation Example: K,, K,, K;, K,

TR X

Ky K, Ks i
i i K . .
= The maximum number of links a network of N )
e nodes can have is: L _NON(N-1) J \
O max _%2 %_ 2
?.’ A graph with degree L=L_, is called a complete graph, ) wits e
\/

and its average degree is <k>=N-1 e

www.Kios.ucy.ac.cy




Simple graphs — special cases 3&%\?&!

J

7
A
\/J/ 7\

= Cycle: C, n 23 consists of n vertices v,, v,, v; ... v, and edges {v,, v,},
{vy, v3}, {vs, va} e {vi gy Vb {V,, i}

Representation Example: C;, C,

K@LOC
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Simple graphs — special cases

N

4
X
= )

= Wheels: W,, obtained by adding additional vertex to Cn and
connecting all vertices to this new vertex by new edges.

Representation Example: W;, W,

<
4N

K@LOC
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= \/7/ )

Simple graphs - special cases x%%é

= N-cubes: Q,, vertices represented by 2n bit strings of length n. Two
vertices are adjacent if and only if the bit strings that they represent
differ by exactly one bit positions

Representation Example: Q,, Q,

10 11
0 1
®e— 0
$ -
0 — Q1 Q2
%
"4



Bipartite graphs X%\%“!

= In a simple graph G, if V can be partitioned into two disjoint sets V,
and V, such that every edge in the graph connects a vertex in V, and
a vertex V, (so that no edge in G connects either two vertices in V, or

two vertices in V,)
Application example: Representing Relations

Representation example: V, = {v,, v,, v;} and V, = {v,, v, v},

K@LOC
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Complete Bipartite graphs o=

\’/‘/}

" K., .is the graph that has its vertex set portioned into two subsets of
m and n vertices, respectively. There is an edge between two
vertices if and only if one vertex is in the first subset and the other

vertex is in the second subset.

Representation example: K, ; K; 5

K@LOC
5
&
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= \/7/ )

Subgraphs Xg\%é

= A subgraph of a graph G =(V, E) is a graph H =(V’, E’) where V' is a
subset of V and E’ is a subset of E

Application example: solving sub-problems within a graph

Representation example: V ={u, v, w}, E = ({u, v}, {v, w}, {w, u}}, H,,

K@LOC
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Subgraphs Xg\%é

A‘\

==_ S

= G=G1UG2whereinE=E1UE2andV=V1UV2, G, G1 and G2 are
simple graphs of G

Representation example: V1 = {u, w}, E1 = {{u, w}}, V2 = {w, v},
El={{w, v}}, V ={u, v,w}, E = {{{u, w}, {{w, v}}

(W
Gv{ w—

K@LOC
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Representation Xfa\ ‘,

* Incidence (Matrix): Most useful when information about edges is
more desirable than information about vertices.

= Adjacency (Matrix/List): Most useful when information about the
vertices is more desirable than information about the edges. These
two representations are also most popular since information about
the vertices is often more desirable than edges in most applications

K@LOC



Representation- Incidence Matrix Xfa\ ‘,

e G = (V, E) be an unditected graph. Suppose that v,, v,, v;, ..., v, are the
vertices and e,, e,, ..., e, are the edges of G. Then the incidence matrix
w;;ch respect to this orderlng of V and E is the n x m matrix M = [m ;],
where

o 1 when edge gjis incident with vi
' 0 otherwise

Can also be used to represent :

Multiple edges: by using columns with identical entries, since these edges
are incident with the same pair of vertices

Loops: by using a column with exactly one entry equal to 1, corresponding
to the vertex that is incident with the loop

K@LOC



Representation- Incidence Matrix ‘r;\éﬁg

|7

= Representation Example: G = (V, E)

@ \Y; 1 0 1
el kz
u 1 1 0
\Y; @ w 0 1 1
e3

K@lOC
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Representation- Adjacency Matrix X%\“E#

"= There is an N x N matrix, where |V| = N, the Adjacenct Matrix (NxN) A =
[aij]

For undirected graph

Qo 1 if {vi, vi}isan edge of G
" |0 otherwise
For directed graph

~[1if (v, vi) isan edge of G
" 710 otherwise

= This makes it easier to find subgraphs, and to reverse graphs if needed.

K@LOC



Representation- Adjacency Matrix Xfa\ ‘»

= Adjacency is chosen on the ordering of vertices. Hence, there are as
many as n! such matrices.

" The adjacency matrix of simple graphs are symmetric (a; = a;)

= When there are relatively few edges in the graph the adjacency
matrix is a sparse matrix

= Directed Multigraphs can be represented by using aij = number of
edges from v; to v,

K@LOC



Representation- Adjacency Matrix

= Example: Undirected Graph G (V, E) v u w
@ Y, 0 1 1
/ \ u | 1 0 1
C C w 1 1 0

= Example: Directed Graph G (V, E)
@ % 0 1 0

\ u | o 0 1
w 1 0 0

K@1OC
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Representation- Adjacency List i\ ‘i

Each node (vertex) has a list of which nodes (vertex) it is adjacent

Example: undirectd graph G (V, E)

@ node Adjacency List
\ u vV, W

\ W, U

W u,vVv

K@1OC
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Counting Walks *f!\q‘!

= Theorem: Let G be a graph with adjacency matrix A with respect to the
ordering v,, Vs, ..., V,, (with directed on undirected edges, with multiple
edges and Ioops aIIowed). The number of different paths of length r from
Vi to Vj, where r is a positive integer, equals the (i, j)t" entry of (adjacency
matrix) A"

Proof: By Mathematical Induction.

Base Case: For the case N = 1, a;=1implies that there is a path of length 1. This is true
since this corresponds to an edge between two vertices.

We assume that theorem is true for N = r and prove the same for N = r +1. Assume that
the (i, j)*" entry of Aris the number of different paths of length r from v; to v;. By
induction hypothesis, b;, is the number of paths of length r from v, to v,..

K@LOC



Counting Walks *fa\ ﬁ,

Caser+1:In A1 =Ar A,

The (i, j)*" entry in A™1, b,a,; + b;, a5 + ..+ b, a

in “nj

where b, is the (i, j)*" entry of A".

By induction hypothesis, b, is the number of paths of length r from v, to
V,.

The (i, j)** entry in A™! corresponds to the length betweeniandj and the
length is r+1. This path is made up of length r from v, to v, and of length
from v, to vj. By product rule for counting, the number of such paths is b,,.
ay; The result is b;;a ; + b;; ay; + ...+ b, a,; the desired result.

in “nj,

K@LOC



Counting Walks ﬁg\%

-,
a ------- b

I I
I I
C --=-=-- d

A=0110 A% = 8008
1001 0880
1001 0880
0110 8008

Number of walks of length 4 from a to d is (1,4) th entry of A* = 8.

K@1OG



Graph - Isomorphism ng\%“!

= G1=(V1, E2)and G2 =(V2, E2) are isomorphic if:

= There is a one-to-one function f from V1 to V2 with the property that
= aand b are adjacent in G1 if and only if f (a) and f (b) are adjacent in G2, for allaand b in V1.

= Function f is called isomorphism
Application Example:

In chemistry, to find if two compounds have the same structure

K@LOC



Graph - Isomorphism \ﬁa\ 6‘

Representation example: G1 = (V1, E1), G2 = (V2, E2)

f(u,) = vy, f(u,) = v,, f(u3) = v;, f(uy) = v,,

KaLOC
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Properties of the Adjacency Matrix Xfa\ ﬁ‘

= |somorphic graphs
» There is a permutation matrix P such that B = PAP-!
= A permutation matrix is a square matrix whose entries are all 0 or 1, such

that each row and each column contains exactly one 1.

= Directed graph is k-regular if the degree of each vertex is k and
eigenvalue is k.

= Perron—-Frobenius Theorem

= Largest eigenvalue A~ average degree : max{d,vd
(G) =-A,x(G)

b< A <d

max max

= Bipartite graph iff A .. max

K@LOC



Connectivity *fa\ ‘,

= Basic Idea: In a Graph Reachability among vertices by traversing the
edges

Application Example:

- In a city to city road-network, if one city can be reached from
another city.

- Problems if determining whether a message can be sent between
two computers using intermediate links

- Efficiently planning routes for data delivery in the Internet

K@LOC



Connectivity — Path xa\ “

!

A Path is a sequence of edges that begins at a vertex of a graph and
travels along edges of the graph, always connecting pairs of adjacent
vertices.

Representation example: G = (V, E), Path P represented, from u to v
is {{ul 1}I {1I 4}I {4I 5}I {5, V}}

@ ‘/' ©®
v W /
— @ ®
%
v/



Connectivity — Path X%\%é

Definition for Directed Graphs

A Path of length n (> 0) from u to v.in G is a sequence of n edges e, e;, e,,
X iwzherse

..., € 0of G such that f ((tei’\) = (Xq, xt1), f (eg) T (xﬁg)ff)' -, fle)) = (c))(F"t'ra{}erse e,

X, = U and x_ = v. A path is said thro

ez’ e3’ LLLY ) e

0 pas Xor Xqp w0y X,

n

For Simple Graphs, sequence is Xo, X;, ..., X,,

In directed multigraphs when it is not necessary to distinguish between
their edges, we can use sequence of vertices to represent the path

Circuit/Cycle: u = v, length of path >0

Simple Path: does not contain an edge more than once

K@LOC



Connectivity — Connectedness *fa\ ‘,
Undirected Graph

An undirected graph is connected if there exists a simple path
between every pair of vertices

Representation Example: G (V, E) is connected since for V = {v,, v,, v,
Vy Vs}, there exists a path between {v;, v;}, 1 <i, j<5

@
. K
9 ® @
%

v/



Connectivity — Connectedness \ra\ 6‘

= Connected (undirected) graph: any two vertices can
be joined by a path.

= A disconnected graph is made up by two or more
connected components.

B
A
A Largest Component:
Giant Component
C
C

b FC J o E
i F b F The rest: Isolates

G

K@1LOG

Bridge: if we erase it, the graph becomes disconnected.
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A‘\

= Q)

Connectivity — Connectedness ﬁ%@é

= Strongly connected directed graph: has a path from each
node to every other node and ViCe versa (e.g. AB path and BA
path).

= Weakly connected directed graph: it is connected if we

disregard the edge directions.

= Strongly connected components can be identified, but not every node
Is part of a nontrivial strongly connected component.

K@LOC



Z

Connectivity — Connectedness X%\g%‘!

= Q)

Directed Graph

Representation example: G1 (Strong component), G2 (Weak
Component), G3 is undirected graph representation of G2 or G1

A A A

Gl G2 G3

K@LOC
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Connectivity — Connectedness ﬁg\%“!

= Directed Graph o

Strongly connected Components: subgraphs of a Graph G that are
strongly connected

Representation example: G1 is the strongly connected component in

o

G G1

K@LOC
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Paths and cycles

= A path is a sequence of nodes
Vy, Vy, ..., Vy such that (v,v,,,) €E for 0<i<N

= The length of the path is N-1.
= Simple path: all v, are distinct, O<i<N

= Acycle is a path such that v,=v,
= An acyclic graph has no cycles

K@LOC
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A‘\

= \/7/ )

U
Trees are graphs ﬁf?@&
= Adagis adirected acyclic graph.

= A treeis a connected acyclic undirected graph.

= A forest is an acyclic undirected graph (not necessarily connected),
i.e., each connected component is a tree.

K@LOC



Example DAG

[Jndershor@

a DAG implies an
ordering on events

K@1OC

www.Kios.ucy.ac.cy



Topological Sort X%\%“!

=)

* For a directed acyclic graph G = (V,E)

= A topological sort is an ordering of all of G’s vertices v,, v,, ..., v, such
that...

Formally: for every edge (v,v,) in E, i<k.

Visually: all arrows are pointing to the right

K@LOC
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Topological Sort \Fg\‘\g “!

S
s\
—C i

" There are often many possible topological sorts of a given DAG
= Topological orders for this DAG :

=1,2,54,3,6,7
= 2,1,5,4,7,3,6
=2,5,1,4,7,3,6
= Ftc.

= Each topological order is a feasible schedule.

K@LOC
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Graph Traversals

Depth, first search

Breadth first %

-

Both take time: O(V+E)

53O

s
O
—
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Wiring: Naive Approach

JJJJJ

JJJJJ

a8 i
i

Central offics

JJJJJ

JJJJJ

b
-y

U
29 Expensive!
]
A4
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Wiring: Better Approach

JJJJJ

JJJJJ

JJJJJ

JJJJJ

JJJJJ

Central office

JJJJJ

JJJJJJJJJJ

JJJJJ

Minimize the total length of wire connecting the customers

K@1OC
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Minimum Spanning Tree (MST)

A minimum spanning tree is a subgraph of an
undirected weighted graph G, such that

it is a tree (i.e., it is acyclic)
* it covers all the vertices V
— contains |V| - 1 edges
 the total cost associated with tree edges is the
minimum among all possible spanning trees

* not necessarily unique

K@1OC
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Prim’s Algorithm

Initialization
a. Pick a vertex r to be the root
b. Set D(r) =0, parent(r) = null
c. For all verticesv € V, v #r, set D(v) =
d. Insert all vertices into priority queue P,
using distances as the keys

Vertex Parent
e -

www.Kios.ucy.ac.cy



Prim’s Algorithm

While P is not empty:

1. Select the next vertex u to add to the tree
u = P.deleteMin()

2. Update the weight of each vertex w adjacent to
u which is not in the tree (i.e., w € P)
If weight(u,w) < D(w),
a. parent(w) = u
b. D(w) = weight(u,w)
c. Update the priority queue to reflect
new distance for w

K@1OC
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Prim’s algorithm

Vertex Parent
e -

b
C -
d

Vertex Parent
e -

b e
415|500 C €
d e

The MST initially consists of the vertex e, and we update
the distances and parent for its adjacent vertices

K@1OC
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Prim’s algorithm

Vertex Parent

e -

d/b|c|a b s
415|5 |0 c ©
d e

Vertex Parent

e -

alcl|b b e
21415 c d
d e

a d

K@1OC
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Prim’s algorithm

Vertex Parent

e -

alc|b b e
C d

21415 g o
a d

Vertex Parent

e -

clb b e
45 C d

d e

a d

K@1OC
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Prim’s algorithm

Vertex Parent

e -

clb b e
4|5 c d
d e

a d

Vertex Parent

e -

b b e

C d

> d e

a d

K@1OC
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Prim’s algorithm

Vertex Parent

o)
M OO TO
QDO QO

Vertex Parent

The final minimum spanning tree

K@1OC
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Running time of Prim’s algorithm
(without heaps)

Initialization of priority queue (array): O(|V|)

Update loop: |V| calls
« Choosing vertex with minimum cost edge: O(|V|)
» Updating distance values of unconnected
vertices: each edge is considered only once
during entire execution, for a total of O(|E|)
updates
Overall cost without heaps: |O(|E| + |V| ?)

K@1OC
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Prim’s Algorithm Invariant Xfa\ “

= At each step, we add the edge (u,v) s.t. the weight of (uU,v) is
minimum among all edges where U is in the tree and v is not in the
tree

= Each step maintains a minimum spanning tree of the vertices that
have been included thus far

* When all vertices have been included, we have a MST for the graph!

K@LOC
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Correctness of Prim’s

= This algorithm adds n-1 edges without creating a cycle, so clearly it creates a
spanning tree of any connected graph (you should be able to prove this).

But is this a minimum spanning tree?

Suppose it wasn't.

= There must be point at which it fails, and in particular there must a single edge
whose insertion first prevented the spanning tree from being a minimum
spanning tree.

K@LOC
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Correctness of Prim’s

 Let G be a connected,
undirected graph

* Let S be the set of
edges chosen by Prim’s
algorithm before
choosing an errorful

edge (x,y)
» Let V' be the vertices incident with edges in S
* Let T be a MST of G containing all edges in S, but not (x,y).

K@1OC
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Correctness of Prim’s

 Edge (x,y)isnotin T, so
there must be a path in
T fromx toy since T is
connected.

* Inserting edge (x,y) into
T will create a cycle

* There is exactly one edge on this cycle with exactly
one vertex in V', call this edge (v,w)

K@1OC
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Correctness of Prim’s Xg\%‘!

= \/7/ )

= Since Prim’s chose (x,y) over (v,w), w(v,w) >= w(x,y).

= We could form a new spanning tree T’ by swapping (x,y) for (v,w) in T (prove this
is a spanning tree).

= w(T’)is clearly no greater than w(T)
= But that means T’ is a MIST

= And yet it contains all the edges in S, and also (x,y)

...Contradiction
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Prim — Step 1
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Prim — Step 2
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Prim — Step 3
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Prim — Step 4
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Prim — Step 5
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Prim — Step 6
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Prim - Step 7 Done!!

Weight (T) = 23 + 29 + 31 + 32 + 47 + 54 + 66 = 282

KaLOC
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Another Approach

= Create a forest of trees from the vertices

» Repeatedly merge trees by adding “safe edges” until only one
tree remains

= Afsafe edge” is an edge of minimum weight which does not
create a cycle

forest: {a}, {b}, {c}, {d}, {e}

K@1OC
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Kruskal’s algorithm

Initialization

a. Create a set for each vertex v e V

b. Initialize the set of “safe edges” A comprising the MST to the
empty set

c. Sort edges by increasing weight

F = {a}, {b}, {c}, {d}, {e}

A=9

E ={(a,d), (c.d), (d.e), (a,c),
(b.e), (c.e), (b,d), (a,b)}

K@1OC

www.Kios.ucy.ac.cy



Kruskal’s algorithm

For each edge (u,v) € E in increasing order
while more than one set remains:
If u and v, belong to different sets U and V
a. add edge (u,v) to the safe edge set
A=A uU {(uv)}
b. merge the sets U and V
F=F-U-V+UuYV)

Return A

= Running time bounded by sorting (or findMin)

= O(|E|log|E|), or equivalently, O(|E|log|V|) (why???)

K@1OC
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Kruskal’s algorithm

Forest A
{a}, {b}, {c}, {d}, {e} D

{a,d}, {b}, {c},{e}  {(a,d)}
{a,d,c}, {b}, {e} {(a,d), (c,d)}
{a,d,c,e}, {b} {(a,d), (c,d), (d,e)}
2 {a,d,c,e,b} {(a,d), (c,d), (d,e), (b,e)}

K@1OC




b 51

= After each iteration, every tree in the forest is a MST of the vertices it connects

Kruskal’'s Algorithm Invariant

= Algorithm terminates when all vertices are connected into one tree

Jlela
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Correctness of Kruskal’s

= This algorithm adds n-1 edges without creating a cycle,
so clearly it creates a spanning tree of any connected
graph (you should be able to prove this).

But is this a minimum spanning tree?

Suppose it wasn't.

= There must be point at which it fails, and in particular
there must a single edge whose insertion first prevented
the spanning tree from being a minimum spanning tree.

K@LOC
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Correctness of Kruskal’s

= Let e be this first errorful edge.
= Let K be the Kruskal spanning tree

= Let S be the set of edges chosen by Kruskal’s algorithm

g before choosing e
;; = Let T be a MST containing all edges in S, but not e.

www.Kios.ucy.ac.cy




Correctness of Kruskal’s

Lemma: w(e’) >=w(e) foralledgese’inT -S

Proof (by contradiction):

= Assume there exists some
edgee’inT-S, w(e’) < w(e)

= Kruskal’s must have
considered e’ before e

« However, since e’ is not in K (why??), it must have
been discarded because it caused a cycle with some of

Uy the other edges in S.
29 - Bute’+ Sis asubgraph of T, which means it cannot
o form a cycle ...Contradiction

4
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Correctness of Kruskal’s ng\%“!

= |nserting edge e into T will create a cycle
= There must be an edge on this cycle which is not in K (why??). Call this edge €’
= ¢’ mustbeinT-S, so(by ourlemma) w(e’) >= w(e)

= We could form a new spanning tree T’ by swapping e for €’ in T (prove this is a
spanning tree).

= w(T’) is clearly no greater than w(T)
= But that means T’ is a MIST
= And yet it contains all the edges in S, and also e

...Contradiction

K@LOC
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Kruskal - Step 1

KaLOC

www.kios.ucy.ac.cy



Kruskal - Step 2
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Kruskal - Step 3
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Kruskal
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Kruskal
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Kruskal — Step 6
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The Seven Bridges of Konigsberg

= The residents of Kdnigsberg, SO, e
dm = ” N "-' S
Germany, wondered if it was i‘@“‘*g‘faﬁm “ L e

possible to take a walking tour 3@4@%

of the town that crossed each 2 ME% .
of the seven bridges over the
Presel river exactly once. Is it q

possible to start at some node
"q"?w

and take a walk that uses each T "’[j'%?f T.\ -

edge exactly once, and ends at
the starting node?

mn.! EFRLL ”"“
L]
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The Seven Bridges of Konigsberg Xg\?é

j‘"'\'

=

= You can redraw the original picture as long as for every edge
between nodes i and j in the original you put an edge between nodes

i and j in the redrawn version (and you put no other edges in the
redrawn version).

Redrawn:
Original:
3
4 1

4 3

Has no tour that uses each edge exactly once

K@LOC
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Euler - definitions Xfa\ éﬁ

/:,

= An Eulerian path (Eulerian trail, Euler walk) in a graph is a path that |
uses each edge precisely once. If such a path exists, the graph is
called traversable.

= An Eulerian cycle (Eulerian circuit, Euler tour) in a graph is a cycle
that uses each edge precisely once. If such a cycle exists, the graph is
called Eulerian (also unicursal).

= Representation example: G1 has Euler patha,c,d, e, b,d,a, b

NN

: (@) ©

K@LOC
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Euler - theorems X%\%‘}

1. A connected graph G is Eulerian if and only if G is connected and has no
vertices of odd degree (each edge has even degree)

2. A connected graph G has a Euler trail from node a to some other node b if and
only if G is connected and a # b are the only two nodes of odd degree
Assume G has an Euler trail T from node a to node b (g and b not necessarily

distinct).

For every node besides a and b, T uses an edge to exit for each edge it uses to
enter. Thus, the degree of the node is even.

1. If a = b, then a also has even degree. 2 Euler circuit

2. If a # b, then a and b both have odd degree. 2 Euler path
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Euler - examples Yﬁ!’\ﬂ%‘!

= A connected graph G is Eulerian if and only if G is connected and has
no vertices of odd degree

a b
f Cc d
Building a simple path:
e {a,b}, {b,c}, {c.f}, {f.a}
g Euler circuit constructed if all edges
2 — are used. True here?

~

’
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Euler - examples

A connected graph G is Eulerian if and only if G is connected and has no
vertices of odd degree

Delete the simple path:
{a,b}, {b,c}, {c.f}, {f.a}

C is the common vertex for this
sub-graph with its “parent”.
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Euler - examples Yﬁ!’\ﬂ%‘!

A connected graph G is Eulerian if and only if G is connected and has no :
vertices of odd degree

Constructed subgraph may not be connected.

C is the common vertex for this sub-graph
with its “parent”.

C has even degree.

Start at ¢ and take a walk:

{c,d}, {d,e}, {e,c}

K@1LOG



Euler - examples Yﬁ!’\ﬂ%‘!

A connected graph G is Eulerian if and only if G is connected and has no :
vertices of odd degree

L

]

“Splice” the circuits in the 2 graphs:

/ {a,b}, {b,c}, {c,f}, {f.a}
i

LOJ~ ° {c.d}, {d.e}, {e,c}
2:) {a,b}’ {b;C_}, {C,d}, {d,e}’ {e’c}, {C,f}
\’ {f,a}

www.Kios.ucy.ac.cy



Euler Circuit Xg\%é

A

1. Circuit C:= a circuit in G beginning at an arbitrary vertex v.

1. Add edges successively to form a path that returns to this vertex.
2. H:=G-above circuit C

3. While H has edges
1.  Sub-circuit sc := a circuit that begins at a vertex in H that is also in C (e.g., vertex “c”)
2. H:=H-sc (-allisolated vertices)

3.  Circuit := circuit C “spliced” with sub-circuit sc

4. Circuit C has the Euler circuit.
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Representation- Incidence Matrix

d
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el

e2

e3

e6

|

D

“

e, e, e; |e4d s €g e,
1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 1 1 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
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=\
Hamiltonian Graph X;\%é

{
==}

= Hamiltonian path (also called traceable path) is a path that visits
each vertex exactly once.

= A Hamiltonian cycle (also called Hamiltonian circuit, vertex tour or
graph cycle) is a cycle that visits each vertex exactly once (except for
the starting vertex, which is visited once at the start and once again
at the end).

= A graph that contains a Hamiltonian path is called a traceable graph.
A graph that contains a Hamiltonian cycle is called a Hamiltonian
graph. Any Hamiltonian cycle can be converted to a Hamiltonian
path by removing one of its edges, but a Hamiltonian path can be
extended to Hamiltonian cycle only if its endpoints are adjacent.

K@LOC



Dodecahedron example




Hamiltonian Graph

= This one has a Hamiltonian path, but not a Hamiltonian tour.

K@LOC
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Hamiltonian Graph

g = This one has an Euler tour, but no Hamiltonian path

,‘.—" o/
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o
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Hamiltonian Graph X%\%“j

A
= Similar notions may be defined for directed graphs, where edges (arcs) of
a path or a cycle are required to point in the same direction, i.e.,
connected tail-to-head.

= The Hamiltonian cycle problem or Hamiltonian circuit problem in graph
theory is to find a_ Hamiltonian cycle in a given graph. The Hamiltonian
path problem is to find a Hamiltonian path in a given graph.

= There is a simple relation between the two problems. The Hamiltonian
path problem or_graoth G is_equivalent to the Hamiltonian cycle problem
|rha grtqph Hfol(:;Jtame from G by adding a new vertex and connecting it to
all vertices of G.

Both problems are NP-complete. However, certain classes of graphs
always contain Hamiltonian paths. For example, it is known that every
tournament has an odd number of Hamiltonian paths.
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Hamiltonian Graph Xfa\ “

= DIRAC’S Theorem: if G is a simple graph with n vertices with n 2 3
such that the degree of every vertex in G is at least n/2 then G has a
Hamilton circuit.

= ORE’S Theorem: if G is a simple graph with n vertices with n 2 3 such
that deg (u) + deg (v) 2 n for every pair of nonadjacent vertices u and
v in G, then G has a Hamilton circuit.
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Shortest Path Xg\%‘i‘

= Generalize distance to weighted setting
= Digraph G = (V,E) with weight function W: E — R (assigning real values to edges)

= Weightof pathp=v, 5> v,—>..>v,is

W(P) = 3 W, Vi)

= Shortest path = a path of the minimum weight

= Applications
= static/dynamic network routing
= robot motion planning
= map/route generation in traffic
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Shortest-Path Problems ng\%‘)‘i

= Shortest-Path problems

= Single-source (single-destination). Find a shortest path from a given source
(vertex s) to each of the vertices. The topic of this lecture.

= Single-pair. Given two vertices, find a shortest path between them. Solution to
single-source problem solves this problem efficiently, too.

= All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming
algorithm.

= Unweighted shortest-paths — BFS.

K@LOC



Algorithm 3 Shortest Path Algorithm on Acyclic Networks

begin
d(s) =0; d(i) = oo for all i € N\ {s};
E=1;
while & < n do
pick 7 such that order(i) = k;
for all arcs (7, j) that emanate from ¢ do
if d(j) > d(i) + c;; then set d(j) = d(7) + c;; and pred(j) = 1; RELAX(u, v)
end;
end;

end;
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Label setting
for acyclic
Networks
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4
6
2
Node i: 2 3 4 5 6 Next Selected Node
Step
d(i) 1 | oo | oo | o | oo 1
pred(i)
2 6 4 oo | oo | o 2
1 1
3 4 8 o0 | o 3
1 2
4 5 6 | co 5
3 3
5 5 9 4
3 5
6 9 6
5




Algorithm 4 Dijkstra’s Algorithm
begin
1) Set PERM ={}; TEMP ={1,2,...};d(1) =0; d(i) =oc fori e N\ {1}.
2) Pick node i from 1'E M P with minimum d(7) and remove it from 1'E M P and put it into
PERM.
3) Scan arcs (i, j) € A(7) such that j € TEMP,

if d(7) > d(i) + c;; then set d(j) = d(i) + ¢;; and pred(j) = 1.
4) It TEMP = {} terminate, otherwise go to step 2.

end
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[12,4]




[0]

[5,3]
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[0]
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Node i: 2 3 4 5 6 Next Selected Node
Step
d(7) 1 oo | o0 | oo | o0 | oo 1
pred(i)
2 6 4 oo | o0 | 0o 3
1 1
3 6 5| 6 | ~ 4
1 3 3
4 6 6 12 2
1 3 4
5 6 | 12 5
‘6‘ 3 | 4
2 — 6 9 6
A4
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Bellman-Ford Algorithm
* More general than Dijkstra’s algorithm: g

Ga

= Edge-weights can be negative

= Detects the existence of negative-weight cycle(s) reachable from s
BELMAN-FORD( G, sg)

INIT(G, s )
fori ¢<1to |V]|-1do O(VXE)
for each edge (u, v) € Edo
RELAX(u, v)
for each edge(u,v) € Edo
if d[v] > d[u]+w(u,v) then

return FALSE > neg-weight cycle

K@1LOG
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Bellman-Ford Algorithm Example




Bellman-Ford Algorithm Example




Bellman-Ford Algorithm Example




Bellman-Ford Algorithm Example




Bellman-Ford Algorithm Example




Traveling Salesman Problem

= Given a number of cities and the costs of traveling from one to the
other, what is the cheapest roundtrip route that visits each city once
and then returns to the starting city?

=" An equivalent formulation in terms of graph theory is: Find the
Hamiltonian cycle with the least weight in a weighted graph.

= |t can be shown that the requirement of returning to the starting city
does not change the computational complexity of the problem.

= Arelated problem is the (bottleneck TSP): Find the Hamiltonian cycle
in a weighted graph with the minimal length of the longest edge.
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TSP

Traveling Salesman Problem (TSP) - Optimization Problem:

Input: A graph G' = (V. E) and weights ¢;; for each edge (7,j) € FE.
Output: A tour, a cycle that visits all the nodes exactly once

(also called a Hamiltonian cycle), of minimum weight.

Consider the Travelling Salesman Problem on a complete graph

Hamiltonian Cycle Problem

Given an undirected graph G' = (V. E), decide whether it has a Hamiltonian cycle.

~/

MOC

The Hamiltonian cycle problem is NP-complete
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a-approximation to the TSP ‘r;y\q&é!

Given a graph G = (V, F), form an input to the TSP by setting, for each pair i, j,
the cost ¢;; equal to 1 if (¢, j) € E, and equal to n + 2 otherwise.
If there is a Hamiltonian cycle in G, then there is a tour of cost n, and

otherwise each tour costs at least 2n + 1.

If there were to exist a 2-approximation algorithm for the TSP, then we could
use this algorithm to distinguish graphs with Hamiltonian cycles from those without any:
run the approximation algorithm on the new TSP input, and if the tour computed has cost

at most 2n, then there exists a Hamiltonian cycle in GG, and otherwise there does not.

Tola

Theorem 2.9: For any o > 1, there does not exist an «-approximation algorithm for the
traveling salesman problem on n cities, provided P # NP. In fact, the existence of an O(2")-
approximation algorithm for the TSP would similarly imply that P = NP.

‘”u-:.f“"‘
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a-approximation to the TSP XF%\%‘)‘:

We assume that the triangle inequality holds: ¢ < ¢;; + cji.

Nearest Addition Algorithm for the Metric

First iteration: find the two closest cities, say ¢ and j, and build a tour

that consists of going from i to j and then back to i again. Let S = {i,j}.

In each subsequent iteration, we find a pair of cities i € S and j &€ S
for which the cost ¢;; is minimum; let & be the city that follows 7 in the
current tour on S. We add j to S, and insert j into the current tour between

¢ and k.
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Nearest Addition Algorithm for the Metric ?g\q‘t&@i
.

Figure 2.4: Illustration of a greedy step of the nearest addition algorithm.

K@lOC
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Christofides Algorithm for the Metric TSP *;\q“%!

Find a minimum spanning tree 7.

Identify the set O of odd-degree nodes with even cardinality.

Compute a minimum-cost perfect matching M on O.

Add M to T to construct a Eulerian graph on the original set of cities.

As in the double-tree algorithm, shortcut this graph to produce a tour.

Theorem 2.13: Christofides’ algorithm for the metric traveling salesman problem is a 3/2-
approzimation algorithm.
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Christofides Algorithm for the Metric TSP ‘r;!\q\%‘!




Christofides Algorithm for the Metric TSP ‘r;!\q\%‘!




Christofides Algorithm for the Metric TSP ‘r;;\q‘gﬁi

g d o
—
-~

’ aedceba




Christofides Algorithm for the Metric TSP ‘r;;\q‘gﬁi

a
.
/2 2 4 1
e 2 e b
3 2
1
5
° 3 )
o " "
—
o a,e,d,c,e,b,a
Y
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Approximation Algorithms for the Metric TSP

Remarkably, no better approximation algorithm for the metric traveling salesman problem
is known. However, substantially better algorithms might yet be found, since the strongest
negative result is as follows.

Theorem 2.14: Unless P = NP, for any constant a < % ~ 1.0045, no a-approximation
algorithm for the metric TSP exists.

It is possible to obtain a polynomial-time approximation scheme in the case that cities
correspond to points in the Euclidean plane and the cost of traveling between

two cities is equal to the Euclidean distance between the corresponding two points.
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Planar Graphs *fa\ ﬁ,

\/

= A graph (or multigraph) G is called planar if G can be drawn in the
plane with its edges intersecting only at vertices of G, such a
drawing of G is called an embedding of G in the plane.

Application Example: VLSI design (overlapping edges requires extra
layers), Circuit design (cannot overlap wires on board)

Representation examples: K1,K2,K3,K4 are planar, Kn for n>4 are
non-planar

K@LOC
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Planar Graphs

= Representation examples: Q,

KaLOC
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Planar graphs

" Representation examples: K; ; is Nonplanar

K@1OC
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Planar graphs i\ ﬁi

= Theorem : Euler's planar graph theorem

* For a connected planar graph or multigraph:

—e+r=2
number /b number
number of regions

of vertices  of edges

K@1OC
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Planar graphs

/
P

R

ke
s\
—C i

Example of Euler’s theorem

R2

R1

K@LOC

R3

R4

A planar graph divides the plane
Into several regions (faces), one
of them is the infinite region.

v=4 e=6,r=4, v-e+r=2



Planar graphs X%\%“!

= Proof of Euler’s formula: By Induction

Base Case: forGl,e,=1,v;=2andr,=1

R1

n+1 Case: Assume, r,=e_ -V, +2is true. Let {an+1, bn+1} be the
edge that is added to Gn to obtain Gn+1 and we prove thatr_ =e_ -
v, + 2 is true. Can be proved using two cases.
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Graph Coloring Problem *fa\ ﬁ,

= Graph coloring is an assignment of “colors”, almost always taken to
be consecutive integers starting from 1 without loss of generality, to
certain objects in a graph. Such objects can be vertices, edges, faces,
or a mixture of the above.

= Application examples: scheduling, register allocation in a
microprocessor, frequency assignment in mobile radios, and pattern
matching
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Vertex coloring problem Xfa\ ‘>

= Assignment of colors to the vertices of the graph such that proper

coloring takes place (no two adjacent vertices are assigned the same
color)

= Chromatic number: least number of colors needed to color the graph

= A graph that can be assigned a (proper) k-coloring is k-colorable, and
it is k-chromatic if its chromatic number is exactly k

T
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Vertex coloring problem Xg\?é

J

" The problem of finding a minimum coloring of a graph is NP-Hard

* The corresponding decision problem (Is there a coloring which uses
at most k colors?) is NP-complete

* The chromatic number for C. =3 (nis odd) or 2 (n is even), K, =n,
K.,=2

= Cn: cycle with n vertices; Kn: fully connected graph with n vertices;
Km,n: complete bipartite graph

K@LOC
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Vertex covering problem X%&(é

= The Four color theorem: the chromatic number of a planar graph is o
no greater than 4

= Example: G1 chromatic number = 3, G2 chromatic number =4

= (Most proofs rely on case by case analysis).

SN PN
o NN N P\
zé G1 G2

www.Kios.ucy.ac.cy




How bad is exponential complexity

Big-O Complexity

1000
900 -
800 +
FO0 4
— 1)
.E 600 T — 3 lagn]
B 500 - —0n)
& a0 | ——0inlogn)
_Ul:f'l"l]
ANG 4 = 1%n)
200 —|:||:|-|I:|
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The P class Xfa\ ‘,

= The class P consists of those problems that are solvable in
polynomial time.

= More specifically, they are problems that can be solved in time O(nk)
for some constant k, where n is the size of the input to the problem

= The key is that n is the size of input
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The NP class Xfa\ ‘,

NP is not the same as non-polynomial complexity/running time. NP

does not stand for not polynomial.

NP = Non-Deterministic polynomial time

= NP means verifiable in polynomial time

Verifiable?

= |f we are somehow given a ‘certificate’ of a solution we can verify the
legitimacy in polynomial time
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P / NP graph theory problems

= Shortest path algorithms solvable in
pseudo-polynomial time

" Longest path is NP complete

= Eulerian tours solvable in polynomial
time
= Hamiltonian tours is NP complete

= Vertex covering problem is NP-hard

www.Kios.ucy.ac.cy

NP-Hard

NP-Complete
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