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Outline 

n Least Squares 
n Weighted Least Squares 
n Maximum Likelihood
n Maximum A Priori (MAP) estimator
n Recursive Least Squares 



Simple Example 

n Assume that you run an experiment and know that the 
model is given by 

n You run 𝑛 experiments with inputs 𝑥#, 𝑥%,… , 𝑥' and measure 
the outputs 𝑦#, 𝑦%,… , 𝑦'.

n

n Solution
¨ This is an overdetermined system with 𝑛 equations and 2 unknowns. 

n Define the mean square error (MSE) criterion

n Determine the parameters 𝑎, 𝑏 that minimize MSE 

y = g(x) = ax + b



Simple Example 

n Compute the partial derivatives with respect to the 
parameters 𝑎, 𝑏 and set them to zero.  

n Let 𝑋# = ∑/0#' 𝑥/, 𝑋% = ∑/0#' 𝑥/% 𝑌# = ∑/0#' 𝑦/, 𝑌% = ∑/0#' 𝑥/𝑦/, 
we get

n Line_LS

Y2 − aX2 − bX1 = 0
Y1 − aX1 − nb = 0

../Matlab/Line_LS.m


In vector form…

n Assume that 𝑌 = 𝑦#,… , 𝑦' 2, 𝐴 = 𝑎, 𝑏 2, 𝑊 is the 𝑛 −
dimentional noise (error) vector and

n Thus, in vector form the model is given by 𝑌 = 𝐻𝐴 +𝑊
n The Least Squares objective is given by 

n To minimize 𝐽 𝐴 we need to find the gradient with respect to 
𝐴 and make it equal to 0; i.e., ∇𝐽 𝐴 = 0

H = x1 1

... ...
xn 1
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Vector gradients 

n So, we obtain the gradient (with respect to 𝐴), 

n assuming 𝐻2𝐻 is invertible
n Line_LS2 

∇X Y
T BX{ } = BTY

J (A) = YTY −YTHA− ATHTY + ATHTHA

∇X y1 y2⎡
⎣
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= BTY

∇X X T BY{ } = BTY ∇X X T BX{ } = B + BT( )X

../Matlab/Line_LS2.m


Weighted Least Squares

n Let the Weighted Least Squares objective given by 

n where 𝑄 is a positive definite symmetric weight matrix
n Again to minimize 𝐽 𝐴 we need to find the gradient with 

respect to 𝐴 and make it equal to 0; i.e., ∇𝐽 𝐴 = 0



Weighted Least Squares

n The gradient (with respect to 𝐴), 

n assuming 𝐻2𝑄𝐻 is invertible



Multi-Parameter Systems 

n Assume that the system is a multi parameter (𝐾 parameters) 
linear system

n We run 𝑛 experiments, 𝑖 = 1,… , 𝑛 where for the 𝑖th-
experiment the input, 𝑥/ = 𝑥#,… , 𝑥? 2 and measure the 
outputs 𝑌2 = [𝑦#, 𝑦%,… , 𝑦'].

n In vector form, all outputs are given by.

where 𝑥/ is the 𝑖th row of 𝐻.

n Define the mean square error (MSE) criterion



Multi-Parameter System 

n So, we obtain the gradient (with respect to 𝐴), 

n assuming 𝐻2𝐻 is invertible
n Line_LS2 

../Matlab/Line_LS2.m


Maximum Likelihood 

n Again assume a linear model where the noise 𝑊 is 
Gaussian W~𝑁(𝟎,𝑹'). 

𝑌 = 𝐻𝐴 +𝑊
n Thus, the conditional pdf 𝑓 𝑌 𝐴 (likelihood) is Gaussian 

The logarithm is given by

𝑓 𝑌|𝐴 =
1

(2𝜋)' 𝑹𝒏
exp −#% 𝑌 − 𝐻𝐴

2𝑹'Q# 𝑌 − 𝐻𝐴

ln f (Y | A)( ) = − 1
2
YTRn

−1Y −YTRn
−1HA− ATHTRn

−1Y + ATHTRn
−1HA+ ln (2π )n |Rn |( )( )

∇ ln f (Y | A)( ) =



Maximum Likelihood 

n Unbiasedness 
𝐸 𝑌 = 𝐸 𝐻𝐴 +𝑊 = 𝐻𝐴

n Therefore

n Define the error 𝐴S = 𝐴 − T𝐴UV, and note that 𝐸 𝐴S = 0

n And error covariance 

E ÂML⎡⎣ ⎤⎦ =

Ae =



MAP Estimator 

n Again assume a linear model where the noise 𝑊 is 
Gaussian W~𝑁(𝟎,𝑹'). 

𝑌 = 𝐻𝐴 +𝑊
n Thus, the conditional pdf 𝑓 𝑌 𝐴 (likelihood) is Gaussian

n And the prior distribution of 𝐴 is given by  

Where 𝑘 is the dimension of 𝐴 which is normally distributed 
with mean 𝜇Y and variance ΣY. 

𝑓 𝑌|𝐴 =
1

(2𝜋)' 𝑹𝒏
exp −#% 𝑌 − 𝐻𝐴

2𝑹'Q# 𝑌 − 𝐻𝐴



MAP Estimator 

n Recall that 

n Thus the overall function to be maximized is 

The logarithm is given by

∇ ln f (Y | A) f (A)( ) =

ÂMAP =
A
max f y | A( ) f (A){ }



MAP Estimator 

n Collecting together all terms proportional to 𝐴.

n Therefore 

n Next we investigate the unbiasedness of the estimator 



Example 

n Let a system with 2 inputs and 2 outputs, 

n The inputs are Gaussian 

n and the outputs are corrupted by Gaussian noise 𝒏.

y1 = 2x1 + x2 + n1,         y2 = −2x1 + x2 + n2

X =
x1
x2
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Example 

n In vector form

n Next we need to compute the inverse matrices 

n So

Y =
y1
y2
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Example 

n For the MAP estimator we need
ÂMAP = HTRn

−1H + Σ X
−1( )−1 HTRn

−1Y + Σ X
−1µX( )


