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Monitoring and Estimation

Background

Instructor: Christos Panayiotou



Outline
" A
m Vectors and Matrices

m Probability and Random Variable
m Stochastic Processes



Vectors and Matrices
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Vector and Matrix Addition
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Vector Addition
"
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Inner (Dot) product
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Matrix Multiplication
" J
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Properties

A+B=B+A A(B+C):AB+AC
(A+B)+C=A+(B+C) A(BC)=(AB)C



Vector and Matrix Transposition
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Trace of a Matrix

" A
m [he trace of a square matrix A4 is the sum of its
diagonal elements

tracelAl = ) ay

s
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It also holds that
trace|AB| = trace|BA]



Rank of a Matrix

" J
m The maximum number of linearly independent
columns of a matrix

m A square nxn matrix is invertible if and only if it
has full rank, i.e., if its rank is equal to n.



Vector Magnitude
" S
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Vector Functions

Example:




Gradient and Hessian

Partial Derivative: of (x) — lim f(x+8e,)- f(x)
@xi 0—0 5
[ of (x)/ox,
Gradient g=V/x)=|
| f (x)/ox, |
- of2(x)/ ox? of*(x)/ ox,0x,
) o (x)/ox,ox,
Hessian Matrix: G =V’ f(x)= / (X): e
(Scicﬁsgfufee)”"ati"es o (x)/ o, o (x)/ ox?



Examples
"
£(x)=100(x, - x? +(1-x,

gzvf(x)z{—400(x2—xlz)xl—2(1—x1)} v/(0) {_02}

200(x, —x?)
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f(X) =4 ln(xl T xz)
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Vector Function Derivatives

fi(x)] Cof(x)/ax, - Of(x)/ox,
F(x): VF(X)Z

of, (x)/ox, -+ of,(x)/ox, |

Jacobean Matrix

F(x) X, + X, + X,

X1X2

- 3xx,e

VE(x)= 1 1 1
- 3x, (1+x,x,)e™  3x,(1+xx,)e™ 0




Determinant

M; IS the matrix that results from A after we remove
row i and column ;.

det[A] = ?:1 a;j (—1)i+jdet Ml] A e ERan



Eigenvalues and Eigenvectors
" J
Definition: Assume that A has dimension nxn. We
define as Eigenvalues the numbers 4 for which

Ap =/Ap

where p is a non-zero vector. The corresponding
solutions p are the Eigenvectors of A.

Characteristic Polynomial:
f(ﬂ) — det(A — ZI) Degree n polynomial

The roots of the equation f{1)=0 (4,,..., 4,) are
the Eigenvalues of A.



Eigenvalues and Eigenvectors
" S

Example: Find the Eigenvalues and Eigenvectors of
10 0 2

A=0 12 O
2 0 10

Characteristic Polynomial:
f(1)=012-4)Y(8-4) Eigenvalues= 12, 12, 8

Eigenvectors:

Api — Z“ipi

plzpzzr[l * I]T p3=7'[1 0 _I]T



Definite and Semidefinite Matrices
" A
Assume G is an nxn symmetric matrix, then we define the
quadratic function

Q(x) =x Gx
where x is a vector of dimension n. Then we say that
m G is positive definite if O(x)>0 for all x=0.
m G is positive semidefinite if O(x)>0 for all x=0.

m G is negative definite if O(x)<0 for all x=0.

m G is negative semidefinite if O(x)<0 for all x=0.



Probabillity

" J
m Frequency definition of probability

Assume an experiment where there are n possible
outcomes 4,4, ... A,

Suppose we repeat the experiment k times and let N;
count the number of times we observe 4;, then

. N;
Pr(4;) = lim —

k— o0
while it also holds

zn: Pr(4,) =1

and



Joint outcomes/events

" A
m |f two outcomes A and B of the experiment are
iIndependent, then the probability of both

occurring is
Pr(AB) = Pr(A) Pr(B)

m If they are also mutually exclusive
Pr(Au B) = Pr(4) + Pr(B)

while if they are not mutually exclusive
Pr(AuU B) = Pr(4) + Pr(B) — Pr(4B)



Conditional probability
" J

m If two outcomes are not independent, then the
occurrence of one outcome may tell us something about
the occurrence of the other. Thus we define the
conditional probability of the outcome A given that B has
occurred

Pr(AB)

Pr(4|B) = — 0

Which also implies that
Pr(A|B) Pr(B) = Pr(B|A) Pr(A)

and
Pr(B|A) Pr(A)

Pr(4|B) = ——- B




Bayes’ Rule
" J
Pr(B|A) Pr(4)
Pr(A|B) = Pr(B)
m Assume all possible mutually exclusive outcomes

A, A, ... A,, while B is some combination of these
outcomes, then the law of total probability states that

Pr(B) = 2 Pr(B|4,) Pr(4;)

m And substituting in the Bayes’ rule, above

Pr(B|A) Pr(A)

PF(AlB) — 1i1:1 Pr(BlAl) Pr(Al)




Random Variables

Random variables are mappings from the set of outcomes
of a random experiment to the set of real numbers defined
on a probability space

Probability space ({, F, P) where
Q) is the set of possible outcomes

F is the set of possible events where an even may consists from a
set of possible outcomes (including the empty set)

P is the probability of an event

Toss a coin with Q = {Heads, Tails} and random variable
X(w); X(Heads) = 1; X(Tails) = 0.
Classification of random variables

Continuous random variables (take any real value)
Discrete random variables (take discrete (integer) values)



Distribution Functions

" A
m (Cumulative) Distribution Function (cdf)
Fx(x) =Pr[X < x]forall x € R

Fx(=) =0
Fx() =1
Fy (x) is a non-decreasing function

m Joint distribution function

Fx(xq, ..., x) = Pr[X; < xq, ..., X, < x;]

To obtain the marginal cdf F(x;) from the joint cdf use
xj=oforallj#i.

m Independent random variables
Fx(x1, e, x0) = F1(x1) ... By (xp)



Distribution Functions

=
m Probability Density Function (pdf) fx(x)

Continuous variables

Fx(x) = f_ fx@)dy

Probability of the event [a < X < b]
b
Prla <X <b]=F(b)—F(a) = f f(y)dy
a

Note: Pr[X =x] =0
m Probability Mass Function
Discrete variables

Fe(x) = ) PriX =]

y<x



Conditional Distributions

" A
Prix<x,Y<y| F(x,
H(x,y) = Pr[X < x|V < y]= 1rl[Dr[;Csy]y]_ IEJ(C;;)

m \What if the conditional eventis Y =y, i.e.,
PriX < x|Y =y]?

Define the conditional density function f(x|y) =

f(x,y)
fy(y)

X
Flxly] = PrlX < x|V = y] = f f(zly)dz
m [otal probability rule
PrlX < x] = f PriX < x|Y = y1fy ()dy

— O



Some Common Distributions

" J
= ifa<x<bh

m Uniform between [a,b] f(x) = {m
0 otherwise

—Ax x =0

. 2
m Exponential f(x) ={ eO Cherise

m Normal (Gaussian), X~N (u, %)

fx) = - e_(xz_a%) = ! exp(—(x_'u)z>

2102 \V21mo? 204
m Multi-Variable Gaussian X~N(u, )
1
fx) = exp(—(x — w)"Z7 1 (x — p))
J@m)"|Z|

x and u are n-dimensional vectors
2 Is the nxn covariance matrix and | 2| its determinant



Functions of Random Variables

m Suppose that random variables are related through Y = g(X)
and the cdf of X is known Fy (x)

Find Fy(y) = Pr[Y < y] = Pr[g(x) < vy]
m Example:
LetY = aX + b, then

Fy(y) =Pr[Y <y] =Prl[aX +b < y] =Pr [X < y_-b]= Fy (y_—b)

a

m Useful formula: Let x; be the roots of y = g(x). Then

h0)=3, ‘ ?(’;))
9 (x,

m Example:
Let Y = X?, then, x; = /y, and x, = — /Y, SO

) =D+ D00 = 25 () + 7))




Expectation / Variance
" J

m Continuous Random Variables
Expected value E[X] = ffooo xf(x)dx

Variance ¢? = E[(X — E[X])?] =
= E[X* — 2XE[X] + (E[X]D?]
= E[X*] — (E[X])*
Standard deviation o.
m Discrete Random Variables

Expected value E[X] = ), x Pr[X = x]
m Moments: nth moment E[X"]

m Coefficient of Variation C, = %



Covariance and correlation

" AN
m Let X,Y be random variables with joint pdf f(x, y),
covariance
Cov(X,Y)=E|(X — E[X]D(Y — E[Y]]
Cov(X,Y) = E[XY — XE[Y] — YE[X] + E[X]E[Y]]
= E[XY] — E[X]E[Y]
m Correlation coefficient
Cov(X,Y)

XY) =
p(X,Y) —

m Let X be a random variable with pdf f(x) then the
characteristic function is defined as

px(t) = E[ejtx] = jooejtxf(x)dx




Law of Large Numbers (LLN)
"

m Let the sequence of n i.i.d. random numbers X, X,, ... X,

each with mean u and variance ¢%, and define the sample

mean
1

S :;(X1+X2+...+ X,)
m Weak LLN: Assume a small € > 0, then
limPr(‘Sn—,u‘ >e)=0

n—yoo

m Strong LLN
Pr(limSn = ,u) =1

n—oo



Central Limit Theorem (CLT)
"

m Let the sequence of n i.i.d. random numbers X, X,, ... X,
each with mean u and variance ¢4, and define the

sample mean
1

S =—|X +X +..+X

n n( 1 2 n)

m Then, as n grows large, the distribution of S,
approximates the Normal distribution (Gaussian) with

mean u and variance a*/n.



Random Process (Stochastic Process)

"
m Collection of Random variables defined on a common
probability space (,F, P) indexed by a variable t.
Continuous random process {X(t)} forallt € R
Discrete time random process {X(t)} forall t = 0,1,2, ...

m To define a random process we need the joint cdf of all
random variables that define the process.

Fy(xg, ..., xy; tg, ..., ty) = Pr[X(ty) < xq, ...., X(t,,) < x,,]
m Independent Process {X(t)}
Fx(Xg, ooy X3 to, ey t) = Fx (%05 Eo)-.- Fx, (Xn; ty)
m Independent Identically Distributed (iid)
Fx(x;t) = Fx, (x¢; to) =...= Fx (xn; ty)



Stationary Process

Autocorrelation: Let the process {X(t)} and two time
iInstances t;, and t,, then the autocorrelation is given by

Ryx(t1,t2) = E[X(t1)X(t,)]
Strict-sense stationary: The process {X(t)} exhibits the
same statistical behavior at all time.
Fy(xg, o, X5 tg + T, sty +T) = Fy(Xg, oo, X5 toy oons b))

for all 7.
Ryx(t;,t;) = Ryx(t, — t;), i.e., it does not depend on t,, and t, but
only on the difference t, — t;.

Ergodicity: Ensample average is equal to time average
Wide-sense stationary:

E[X(t)] = C (constant) for all t.
EIX(®)X(t +17)] =g(2)



Gaussian (Normal) Process
" S

m Let the process {X(t)} be Gaussian, then the distribution of
X(t) and any time instant t is Gaussian

X()~N(ug of)
1 exp (_ (x — #t)2>

\ 21mof 20

m The joint distribution of the points t4, ..., t,, is a multi-variable
Gaussian X~N(u, 2)

x and u are n-dimensional vectors

XY Is the nxXn autocovariance matrix

m Gaussian White Noise

The variables {X(t)} are independent identically distributed (i.i.d.)
X(t)~N(u,a?) for all t.

flx,t) =



