ECE801 Monitoring and Estimation

Background

Instructor: Christos Panayiotou

Outline

- Vectors and Matrices
- Probability and Random Variable
- Stochastic Processes

Vectors and Matrices

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathfrak{R}^n \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \in \mathfrak{R}^{n \times m}$$
Vector

Matrix

Function of multiples variables.

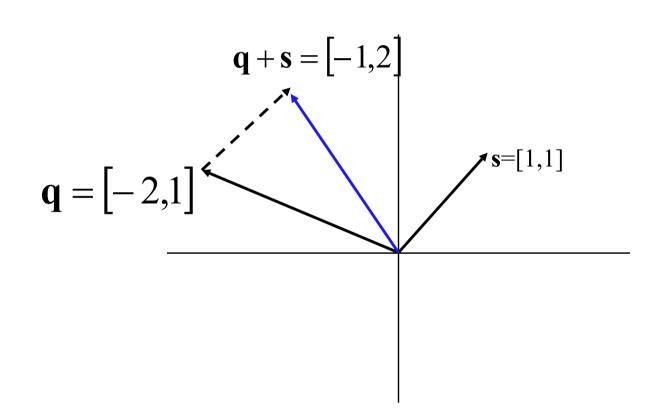
$$f(x_1, \dots, x_n) = f(\mathbf{x})$$

Vector and Matrix Addition

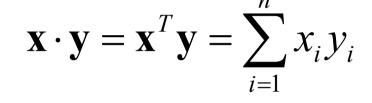
If
$$\mathbf{x} \in \mathfrak{R}^n$$
 and $\mathbf{y} \in \mathfrak{R}^n$ $\mathbf{x} \pm \mathbf{y} = \begin{bmatrix} x_1 \pm y_1 \\ x_2 \pm y_2 \\ \vdots \\ x_n \pm y_n \end{bmatrix}$

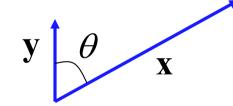
$$\mathbf{If} \ \mathbf{A}, \mathbf{B} \in \Re^{n \times m} \ \mathbf{A} \pm \mathbf{B} = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{1m} \pm b_{1m} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \cdots & a_{2m} \pm b_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} \pm b_{n1} & a_{n2} \pm b_{n2} & \cdots & a_{nm} \pm b_{nm} \end{bmatrix}$$

Vector Addition



Inner (Dot) product





$$\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cos \theta$$

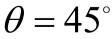
$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Example

$$\mathbf{x}^T \mathbf{y} = 1 \cdot 0 + 1 \cdot 1 = 1$$

$$\mathbf{x}^T\mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cos \theta$$

$$= \sqrt{2} \cdot 1 \cdot \frac{\sqrt{2}}{2} = 1$$



Matrix Multiplication

$$\mathbf{A} \in \mathfrak{R}^{n \times m}, \mathbf{B} \in \mathfrak{R}^{m \times k}$$

$$\mathbf{AB} = \begin{bmatrix} \sum_{l=1}^{m} a_{1l} b_{l1} & \cdots & \sum_{l=1}^{m} a_{1l} b_{lk} \\ \vdots & & \vdots \\ \sum_{l=1}^{m} a_{nl} b_{l1} & \cdots & \sum_{l=1}^{m} a_{nl} b_{lk} \end{bmatrix} \in \Re^{n \times k}, \quad \text{In general} \quad \mathbf{AB} \neq \mathbf{BA}$$

Properties

$$A + B = B + A$$
 $A(B+C) = AB + AC$
 $(A+B)+C = A+(B+C)$ $A(BC)=(AB)C$

Vector and Matrix Transposition

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathfrak{R}^n$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \in \mathbb{R}^{n \times m}$$

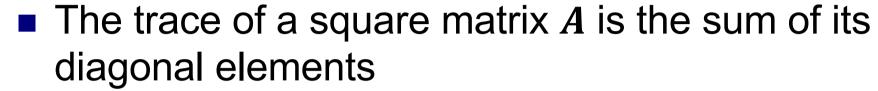
$$\mathbf{x}^T = \begin{bmatrix} x_1, \dots, x_n \end{bmatrix} \qquad \mathbf{A}^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$\mathbf{x}^T = \left[x_1, \cdots, x_n\right]$$

$$\mathbf{A}^{T} = \left| egin{array}{ccccc} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{mn} \end{array}
ight| \in \mathfrak{R}^{m imes m}$$

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

Trace of a Matrix



$$trace[A] = \sum_{i=1}^{n} a_{ii}$$

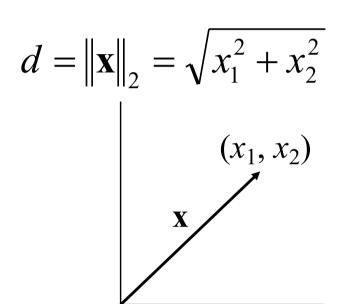
It also holds that

$$trace[AB] = trace[BA]$$

Rank of a Matrix

- The maximum number of linearly independent columns of a matrix
- A square $n \times n$ matrix is invertible if and only if it has full rank, i.e., if its rank is equal to n.

Vector Magnitude



In multi-dimensional spaces:

$$d(\mathbf{x}) = \|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \sqrt{\sum_{i=1}^n x_i^2}$$

Euclidean distance

Vector Functions

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{bmatrix}$$

Example:

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 3x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ f_3(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \ln(x_1 + x_2 + x_3) \\ x_1 x_2 x_3 e^{x_1} \\ x_2 \end{bmatrix}$$

Gradient and Hessian

Partial Derivative:

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{e}_i) - f(\mathbf{x})}{\delta}$$

Gradient

$$\mathbf{g} = \nabla f(\mathbf{x}) = \begin{bmatrix} \partial f(\mathbf{x}) / \partial x_1 \\ \vdots \\ \partial f(\mathbf{x}) / \partial x_n \end{bmatrix}$$

Hessian Matrix:
$$\mathbf{G} = \nabla^2 f(\mathbf{x}) = \begin{bmatrix} \partial f^2(\mathbf{x})/\partial x_1^2 & \partial f^2(\mathbf{x})/\partial x_1\partial x_n \\ \partial f^2(\mathbf{x})/\partial x_1\partial x_2 & \ddots \\ \vdots & & \partial f^2(\mathbf{x})/\partial x_1\partial x_n \end{bmatrix}$$

Second derivatives (curvature)
$$\partial f^2(\mathbf{x})/\partial x_1\partial x_n & \partial f^2(\mathbf{x})/\partial x_n^2 \end{bmatrix}$$

Examples

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$\mathbf{g} = \nabla f(\mathbf{x}) = \begin{bmatrix} -400(x_2 - x_1^2)x_1 - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{bmatrix} \qquad \nabla f(\mathbf{0}) = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

$$\mathbf{G} = \nabla^2 f(\mathbf{x}) = \begin{bmatrix} -400(x_2 - 3x_1^2) + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix} \nabla^2 f(\mathbf{0}) = \begin{bmatrix} 2 & 0 \\ 0 & 200 \end{bmatrix}$$

$$f(\mathbf{x}) = x_1 \ln(x_1 + x_2)$$

$$\mathbf{g} = \nabla f(\mathbf{x}) = \begin{bmatrix} \ln(x_1 + x_2) + \frac{x_1}{x_1 + x_2} \\ \frac{x_1}{x_1 + x_2} \end{bmatrix} \qquad \mathbf{G} = \nabla^2 f(\mathbf{x}) = \frac{1}{(x_1 + x_2)^2} \begin{bmatrix} x_1 + 2x_2 & x_2 \\ x_2 & -1 \end{bmatrix}$$

Vector Function Derivatives

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix} \quad \nabla \mathbf{F}(\mathbf{x}) = \begin{bmatrix} \partial f_1(\mathbf{x}) / \partial x_1 & \cdots & \partial f_1(\mathbf{x}) / \partial x_n \\ \vdots & & \vdots \\ \partial f_m(\mathbf{x}) / \partial x_1 & \cdots & \partial f_m(\mathbf{x}) / \partial x_n \end{bmatrix}$$

Jacobean Matrix

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 + x_3 \\ 3x_1x_2e^{x_1x_2} \end{bmatrix}$$

$$\nabla \mathbf{F}(\mathbf{x}) = \begin{bmatrix} 1 & 1 & 1 \\ 3x_2(1+x_1x_2)e^{x_1x_2} & 3x_1(1+x_1x_2)e^{x_1x_2} & 0 \end{bmatrix}$$

Determinant

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \det(\mathbf{A}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \quad \det(\mathbf{A}) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

 M_{ij} is the matrix that results from **A** after we remove row i and column j.

$$\det[A] = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det M_{ij} \qquad \mathbf{A} \in \mathfrak{R}^{n \times n}$$

Eigenvalues and Eigenvectors

Definition: Assume that **A** has dimension $n \times n$. We define as Eigenvalues the numbers λ for which

$$\mathbf{A}\mathbf{p} = \lambda \mathbf{p}$$

where **p** is a non-zero vector. The corresponding solutions **p** are the Eigenvectors of **A**.

Characteristic Polynomial:

$$f(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$$
 Degree *n* polynomial

The roots of the equation $f(\lambda)=0$ ($\lambda_1,...,\lambda_n$) are the Eigenvalues of A.

Eigenvalues and Eigenvectors

$$\mathbf{A} = \begin{bmatrix} 10 & 0 & 2 \\ 0 & 12 & 0 \\ 2 & 0 & 10 \end{bmatrix}$$

Characteristic Polynomial:

$$f(\lambda) = (12 - \lambda)^2 (8 - \lambda)$$
 Eigenvalues= 12, 12, 8

Eigenvectors:

$$\mathbf{A}\mathbf{p}_{i}=\lambda_{i}\mathbf{p}_{i}$$

$$\mathbf{p}_1 = \mathbf{p}_2 = r[1 \quad * \quad 1]^T \quad \mathbf{p}_3 = r[1 \quad 0 \quad -1]^T$$

Definite and Semidefinite Matrices

Assume G is an $n \times n$ symmetric matrix, then we define the quadratic function

$$Q(\mathbf{x}) = \mathbf{x}^T \mathbf{G} \mathbf{x}$$

where x is a vector of dimension n. Then we say that

- G is positive definite if Q(x)>0 for all $x\neq 0$.
- **G** is positive semidefinite if $Q(\mathbf{x}) \ge 0$ for all $\mathbf{x} \ne \mathbf{0}$.
- **G** is negative definite if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- **G** is negative semidefinite if $Q(\mathbf{x}) \le 0$ for all $\mathbf{x} \ne \mathbf{0}$.

Probability

- Frequency definition of probability
 - □ Assume an experiment where there are n possible outcomes $A_1, A_2 ... A_n$
 - \square Suppose we repeat the experiment k times and let N_i count the number of times we observe A_i , then

$$\Pr(A_i) = \lim_{k \to \infty} \frac{N_i}{k}$$

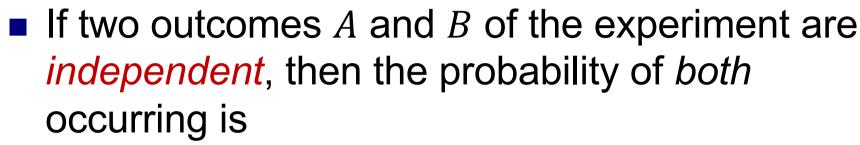
□ while it also holds

$$0 \le \Pr(A_i) \le 1$$

and

$$\sum_{i=1}^{n} \Pr(A_i) = 1$$

Joint outcomes/events



$$Pr(AB) = Pr(A) Pr(B)$$

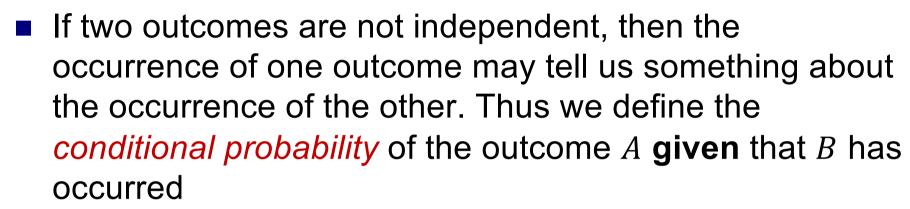
If they are also mutually exclusive

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

while if they are not mutually exclusive

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(AB)$$

Conditional probability



$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)}$$

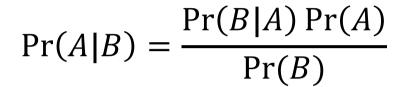
Which also implies that

$$Pr(A|B) Pr(B) = Pr(B|A) Pr(A)$$

and

$$Pr(A|B) = \frac{Pr(B|A) Pr(A)}{Pr(B)}$$

Bayes' Rule



Assume all possible mutually exclusive outcomes $A_1, A_2 \dots A_n$, while B is some combination of these outcomes, then the law of total probability states that

$$Pr(B) = \sum_{i=1}^{n} Pr(B|A_i) Pr(A_i)$$

And substituting in the Bayes' rule, above

$$Pr(A|B) = \frac{Pr(B|A) Pr(A)}{\sum_{i=1}^{n} Pr(B|A_i) Pr(A_i)}$$

Random Variables

- Random variables are mappings from the set of outcomes of a random experiment to the set of real numbers defined on a probability space
- Probability space (Ω, \mathcal{F}, P) where
 - $\ \square$ $\ \Omega$ is the set of possible outcomes
 - \Box \mathcal{F} is the set of possible events where an even may consists from a set of possible outcomes (including the empty set)
 - \square *P* is the probability of an event
- Toss a coin with $\Omega = \{Heads, Tails\}$ and random variable $X(\omega); X(Heads) = 1; X(Tails) = 0.$
- Classification of random variables
 - □ Continuous random variables (take any real value)
 - □ Discrete random variables (take discrete (integer) values)

Distribution Functions

$$F_X(x) = \Pr[X \le x] \text{ for all } x \in \mathbb{R}$$

- $\Box F_X(-\infty) = 0$
- $\Box F_X(\infty) = 1$
- $\Box F_X(x)$ is a non-decreasing function
- Joint distribution function

$$F_X(x_1, ..., x_n) = \Pr[X_1 \le x_1, ..., X_n \le x_n]$$

- □ To obtain the marginal cdf $F(x_i)$ from the joint cdf use $x_i = \infty$ for all $j \neq i$.
- Independent random variables

$$F_X(x_1, ..., x_n) = F_1(x_1) ... F_n(x_n)$$

Distribution Functions

- Probability Density Function (pdf) $f_X(x)$
 - Continuous variables

$$F_X(x) = \int_{-\infty}^x f_X(y) dy$$

 \square Probability of the event $[a \le X \le b]$

$$\Pr[a \le X \le b] = F(b) - F(a) = \int_a^b f(y)dy$$

- \square Note: Pr[X = x] = 0
- Probability Mass Function
 - □ Discrete variables

$$F_X(x) = \sum_{y \le x} \Pr[X = y]$$

Conditional Distributions



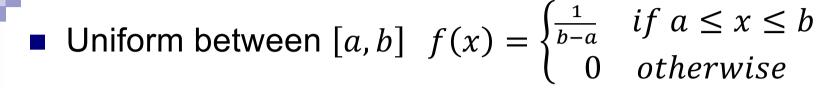
- What if the conditional event is Y = y, i.e., $Pr[X \le x | Y = y]$?
 - □ Define the conditional density function $f(x|y) = \frac{f(x,y)}{f_Y(y)}$

$$F[x|y] = \Pr[X \le x|Y = y] = \int_{-\infty}^{x} f(z|y)dz$$

Total probability rule

$$\Pr[X \le x] = \int_{-\infty}^{\infty} \Pr[X \le x | Y = y] f_Y(y) dy$$

Some Common Distributions



■ Exponential
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & otherwise \end{cases}$$

■ Normal (Gaussian), $X \sim N(\mu, \sigma^2)$

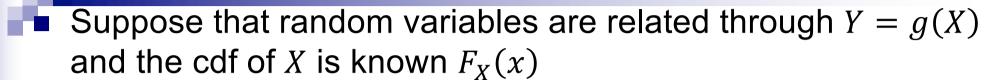
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

■ Multi-Variable Gaussian $X \sim N(\mu, \Sigma)$

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

- \square x and μ are n-dimensional vectors
- \square Σ is the $n \times n$ covariance matrix and $|\Sigma|$ its determinant

Functions of Random Variables



Find
$$F_Y(y) = \Pr[Y \le y] = \Pr[g(x) \le y]$$

- Example:
 - \square Let Y = aX + b, then

$$\Box F_Y(y) = \Pr[Y \le y] = \Pr[aX + b \le y] = \Pr\left[X \le \frac{y - b}{a}\right] = F_X\left(\frac{y - b}{a}\right)$$

■ Useful formula: Let x_i be the roots of y = g(x). Then

$$f_Y(y) = \sum_{i} \frac{f_X(x_i)}{\left| \frac{dg}{dx}(x_i) \right|}$$

- Example:
 - \square Let $Y=X^2$, then, $x_1=\sqrt{y}$, and $x_2=-\sqrt{y}$, so

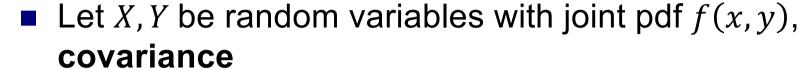
Expectation / Variance

- \square Expected value $E[X] = \int_{-\infty}^{\infty} x f(x) dx$
- □ Variance $\sigma^2 = E[(X E[X])^2] =$ = $E[X^2 - 2XE[X] + (E[X])^2]$ = $E[X^2] - (E[X])^2$
- \square Standard deviation σ .

Discrete Random Variables

- \square Expected value $E[X] = \sum_{x} x \Pr[X = x]$
- **Moments**: nth moment $E[X^n]$
- Coefficient of Variation $C_X = \frac{\sigma_X}{E[X]}$

Covariance and correlation



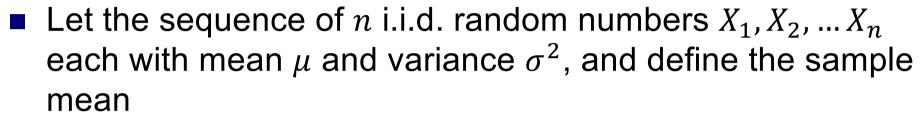
Correlation coefficient

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Let X be a random variable with pdf f(x) then the characteristic function is defined as

$$\varphi_X(t) = E[e^{jtX}] = \int_{-\infty}^{\infty} e^{jtx} f(x) dx$$

Law of Large Numbers (LLN)



$$S_n = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$

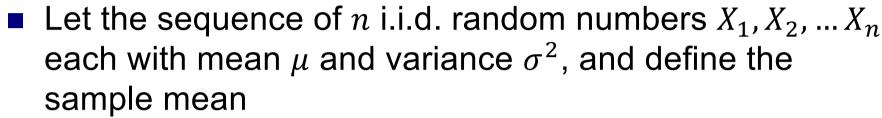
■ Weak LLN: Assume a small $\varepsilon > 0$, then

$$\lim_{n\to\infty} \Pr(|S_n - \mu| > \epsilon) = 0$$

Strong LLN

$$\Pr\left(\lim_{n\to\infty} S_n = \mu\right) = 1$$

Central Limit Theorem (CLT)



$$S_n = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$

■ Then, as n grows large, the distribution of S_n approximates the Normal distribution (Gaussian) with mean μ and variance σ^2/n .

Random Process (Stochastic Process)

- Collection of Random variables defined on a common probability space (Ω, \mathcal{F}, P) indexed by a variable t.
 - □ Continuous random process $\{X(t)\}$ for all $t \in \mathbb{R}$
 - \square Discrete time random process $\{X(t)\}$ for all t=0,1,2,...
- To define a random process we need the joint cdf of *all* random variables that define the process.

$$F_X(x_0, ..., x_n; t_0, ..., t_n) = \Pr[X(t_0) \le x_0,, X(t_n) \le x_n]$$

■ Independent Process $\{X(t)\}$

$$F_X(x_0, ..., x_n; t_0, ..., t_n) = F_{X_0}(x_0; t_0) ... F_{X_n}(x_n; t_n)$$

Independent Identically Distributed (iid)

$$F_X(x;t) = F_{X_0}(x_0;t_0) = \dots = F_{X_n}(x_n;t_n)$$

Stationary Process

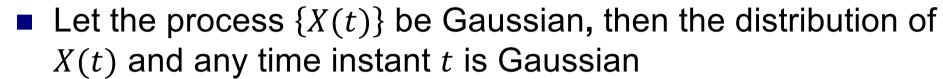
- Autocorrelation: Let the process $\{X(t)\}$ and two time instances t_1 , and t_2 , then the autocorrelation is given by $R_{XX}(t_1,t_2)=E[X(t_1)X(t_2)]$
- **Strict-sense stationary**: The process $\{X(t)\}$ exhibits the same statistical behavior at all time.

$$F_X(x_0, ..., x_n; t_0 + \tau, ..., t_n + \tau) = F_X(x_0, ..., x_n; t_0, ..., t_n)$$
 for all τ .

- \square $R_{XX}(t_1,t_2)=R_{XX}(t_2-t_1)$, i.e., it does not depend on t_1 , and t_2 but only on the difference t_2-t_1 .
- □ **Ergodicity**: Ensample average is equal to time average
- Wide-sense stationary:

$$E[X(t)] = C$$
 (constant) for all t .
 $E[X(t)X(t+\tau)] = g(\tau)$

Gaussian (Normal) Process



$$f(x,t) = \frac{X(t) \sim N(\mu_t, \sigma_t^2)}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{(x - \mu_t)^2}{2\sigma_t^2}\right)$$

- The joint distribution of the points $t_1, ..., t_n$ is a multi-variable Gaussian $X \sim N(\mu, \Sigma)$
 - \square x and μ are n-dimensional vectors
 - \square Σ is the $n \times n$ autocovariance matrix
- Gaussian White Noise
 - □ The variables $\{X(t)\}$ are independent identically distributed (i.i.d.) $X(t) \sim N(\mu, \sigma^2)$ for all t.